当前位置: 首页 > news >正文

做网站前台步骤百度权重怎么提高

做网站前台步骤,百度权重怎么提高,专业做装修设计的网站,中国做外贸的网站目录 定义 推导前言 证明 定义 高斯公式又叫高斯定理 (或散度定理): 矢量穿过任意闭合曲面的通量等于矢量的散度对闭合面所包围的体积的积分 它给出了闭曲面积分和相应体积分的积分变换关系,是矢量分析中的重要恒等式。 推导前言 1.也…

目录

定义

推导前言

证明 

定义

高斯公式又叫高斯定理 (或散度定理): 矢量穿过任意闭合曲面的通量等于矢量的散度对闭合面所包围的体积的积分 它给出了闭曲面积分和相应体积分的积分变换关系,是矢量分析中的重要恒等式。

推导前言

1.也就是封闭曲面通量问题,一块光滑连续的封闭曲面∑,围成一个几何体Ω,存在矢量场V,坐标不同,流速度不同

 2.那么通过经典的积分思想:把∑分成无数小块,每块近似平面,且小块面上速度V近似不变,求出每一块通量再求和取极限,问题就能解决

 

3.同样因为V的方向和Δs方向不一样,且夹角位置,所以把V分解为分别沿x,y,z方向,将Δs投影到三面得到x,y,z面对应的面积

 那么总通量就得出为

一般做法将其换为二重积分进行计算,但是也有换不了的情况,那么高斯公式就能解决这一情况

证明 

首先化繁为简,假设是计算一个矩形的通量

 试着把两个矩形拼在一起

 就会发现两个矩形重合的面因为方向完全相反,所以通量抵消,于是就可以简化

按照规律不管叠加多少个,都只会剩下外层

 

 再加上积分的思想,就可以求出任何封闭曲面的通量了

那么接下来开始公式的推导

取一小块dv,标注各点x,y,z方向的流速,外侧

 其中以A为基准

A[P(x,y,z),Q(x,y,z),z(x,y,z)]

B[P(x+dx,y,z),Q(x+dx,y,z),z(x+dx,y,z)]

C[P(x+dx,y+dy,z),Q(x+dx,y+dy,z),z(x+dx,y+dy,z)]

D[P(x,y+dy,z),Q(x,y+dy,z),z(x,y+dy,z)]

E[P(x,y,z+dz),Q(x,y,z+dz),z(x,y,z+dz)]

F[P(x+dx,y,z+dz),Q(x+dx,y,z+dz),z(x+dx,y,z+dz)]

G[P(x+dx,y+dy,z+dz),Q(x+dx,y+dy,z+dz),z(x+dx,y+dy,z+dz)]

C[P(x,y+dy,z+dz),Q(x,y+dy,z+dz),z(x,y+dy,z+dz)]

那么就可以计算出各面通量

\PhiABCD = -R(x,y,z)dxdy 

\PhiEFGH = R(x,y,z+dz)dxdy 

 \PhiBCFG = P(x+dx,y,z)dydz 

 \PhiADEH = -P(x,y,z)dydz 

 \PhiABEF = -Q(x,y,z)dxdz 

  \PhiDCHG = Q(x,y+dy,z)dxdz 

 再将全部加起来就是总通量

\Phi = \PhiABCD + \PhiEFGH +  \PhiBCFG +   \PhiADEH +   \PhiABEF +  \PhiDCHG

   =  P(x+dx,y,z)dydz - P(x,y,z)dydz + Q(x,y+dy,z)dxdz - Q(x,y,z)dxdz + R(x,y,z+dz)dxdy -R(x,y,z)dxdy

   = [P(x+dx,y,z) - P(x,y,z)]dydz + [Q(x,y+dy,z) - Q(x,y,z)]dxdz + [R(x,y,z+dz) -R(x,y,z)]dxdy

   =\frac{P(x+dx,y,z) - P(x,y,z)}{​{\partial }x{\partial }y{\partial }z}dy^{2}dz^{2}dx + \frac{Q(x,y+dy,z) - Q(x,y,z)}{​{\partial }x{\partial }y{\partial }z}dx^{2}dz^{2}dy + \frac{R(x,y,z+dz) - R(x,y,z)}{​{\partial }x{\partial }y{\partial }z}dx^{2}dy^{2}dz

   =\frac{P(x+dx,y,z) - P(x,y,z)}{​{\partial }x}dxdydz + \frac{Q(x,y+dy,z) - P(x,y,z)}{​{\partial }y}dxdydz + \frac{R(x,y,z+dz) - P(x,y,z)}{​{\partial }z}dxdydz

   =\left ( \frac{\partial P(x,y,z))}{\partial x}+\frac{\partial Q(x,y,z))}{\partial y} + \frac{\partial R(x,y,z))}{\partial z} \right )dxdydz

所以一个小块的通量就是\left ( \frac{\partial P(x,y,z))}{\partial x}+\frac{\partial Q(x,y,z))}{\partial y} + \frac{\partial R(x,y,z))}{\partial z} \right )dxdydz

因为空间曲面围成的是空间几何体,所以将其进行三重积分

那么最后得到高斯公式 

 随之出现的\frac{\partial P(x,y,z))}{\partial x}+\frac{\partial Q(x,y,z))}{\partial y} + \frac{\partial R(x,y,z))}{\partial z}也就是场论中一个重要的概念 散度 ,所以高斯定理也叫做散度定理。

http://www.fp688.cn/news/164066.html

相关文章:

  • 工程在哪个网站做推广比较合适谷歌优化是什么意思
  • 开源网站 gutib找小网站的关键词
  • 网站建设公司新报价外包平台
  • 哪种网站开发简单免费代码网站
  • 甘肃最新疫情情况:无新增确诊病例杭州seo网站排名
  • 制作网站去哪家好保定seo建站
  • 做培训网站哪家好百度高级搜索页面的网址
  • 有哪些网站是做红酒批发的网络营销常用的工具有哪些
  • 做网站的感觉百度seo如何快速排名
  • 公司手机网站建设网上怎么发布广告
  • 中国最好的网站制作百度注册入口
  • 一个主体如何添加网站批量查询指数
  • 商丘网站建设价格四川刚刚发布的最新新闻
  • 医院网站建设趋势百度搜索引擎优化案例
  • wordpress源码书籍内蒙古seo
  • 做视频网站用什么好seo站内优化技巧
  • 360网站seo优化怎么做小红书关键词热度查询
  • 曲靖企业网站专业seo培训学校
  • 个人的视频网站如何做seo专员工资待遇
  • 网页制作购物网站企业品牌推广网站
  • 网站必须备案吗如何购买域名
  • 移动app设计网站建设建设公司网站大概需要多少钱?
  • 甜蜜高端定制网站如何做好市场推广
  • 新乡网站关键字优化口碑优化seo
  • 学校 网站源码网站优化排名易下拉软件
  • wordpress插件中文网站优化软件
  • 太原推广团队余姚关键词优化公司
  • 网站如何做301跳转百度网盘网页版登录首页
  • 网站开发设计工程师岗位职责网络营销模式
  • 山东工程网站建设抖音推广运营公司