当前位置: 首页 > news >正文

东莞网站系统后缀全网媒体发布平台

东莞网站系统后缀,全网媒体发布平台,使用cn域名做网站的多吗,常州网站seoPart 1 前置知识:LGV引理 摘抄自oi-wiki: L G V LGV LGV引理可以用来处理有向无环图上不相交路径计数等问题。 基本定义: w ( P ) w(P) w(P)表示 P P P这条路径上所有边的 边权之积 。(路径计数时,可以将边权都设为…

Part 1

前置知识:LGV引理

摘抄自oi-wiki:

L G V LGV LGV引理可以用来处理有向无环图上不相交路径计数等问题。

基本定义: w ( P ) w(P) w(P)表示 P P P这条路径上所有边的 边权之积 。(路径计数时,可以将边权都设为 1 1 1

e ( u , v ) e(u,v) e(u,v)表示 u u u v v v的每一条路径 P P P w ( P ) w(P) w(P)之和,即 e ( u , v ) = ∑ P : u → v w ( P ) e(u,v)=\sum_{P:u\to v}w(P) e(u,v)=P:uvw(P)。(注意这里的 P P P都是简单路径)

设起点集合为 A A A,终点集合为 B B B,大小均为 n n n

一组 A → B A\to B AB的不相交路径 S S S S i S_i Si时一条从 A i A_i Ai B σ ( S ) i B_{\sigma(S)_i} Bσ(S)i的路径(其中 σ ( S ) \sigma(S) σ(S)是一个排列),对于任意 i ≠ j i\ne j i=j S i S_i Si S j S_j Sj没有公共结点。记 t ( σ ) t(\sigma) t(σ)表示排列 σ \sigma σ的逆序对个数。

引理:

M = [ e ( A 1 , B 1 ) e ( A 1 , B 2 ) ⋯ e ( A 1 , B n ) e ( A 2 , B 1 ) e ( A 2 , B 2 ) ⋯ e ( A 2 , B n ) ⋮ ⋮ ⋱ ⋮ e ( A n , B 1 ) e ( A n , B 2 ) ⋯ e ( A n , B n ) ] M=\begin{bmatrix} e(A_1,B_1)&e(A_1,B_2)&\cdots&e(A_1,B_n)\\ e(A_2,B_1)&e(A_2,B_2)&\cdots&e(A_2,B_n)\\ \vdots&\vdots&\ddots&\vdots\\ e(A_n,B_1)&e(A_n,B_2)&\cdots&e(A_n,B_n) \end{bmatrix} M= e(A1,B1)e(A2,B1)e(An,B1)e(A1,B2)e(A2,B2)e(An,B2)e(A1,Bn)e(A2,Bn)e(An,Bn)

det(M) = ∑ S : A → B ( − 1 ) t ( σ ( S ) ) ∏ i = 1 n ω ( S i ) \text{det(M)}=\sum_{S:A\to B}(-1)^{t(\sigma(S))}\prod_{i=1}^n\omega(S_i) det(M)=S:AB(1)t(σ(S))i=1nω(Si)

其中 ∑ S : A → B \sum_{S:A\to B} S:AB表示 A → B A\to B AB的不相交路径组 S S S

证明考虑行列式的定义,对于相交的路径组可以两两配对且符号相反,因此可以抵消。

对于这道题,题目保证了是有向无环图,因此考虑 L G V LGV LGV引理。

显然,将每条边随机赋一个权值后,就可以直接通过行列式非零来判断是否存在不相交路径。

对于区间 [ l , r ] [l,r] [l,r],由于并不确定被选出的 i i i个位置,因此考虑对于每个位置构造一个 k k k维向量,答案即为从 [ l , r ] [l,r] [l,r]中选出的极大线性无关向量组的大小。路径权值之和可以通过拓扑排序求出。

这样,我们从左往右扫描线,维护一个线性基,如果线性相关了就把编号最小的基替换掉,将剩下的基的编号排序从小到大排序后就能知道每个区间对应的基的大小。

复杂度 O ( n k 2 + m k ) O(nk^2+mk) O(nk2+mk)

注意线性基的实现方式。

#include<bits/stdc++.h>
#define ll long long
#define pb push_back
#define fi first
#define se second
#define db double
#define inf 0x3f3f3f3f
using namespace std;
const int mod=1e9+7;
const int N=1e5+5;
int n,m,K,du[N],vs[N];
ll a[N][55];
mt19937 gen(114514);
vector<pair<int,int>>G[N];
queue<int>Q;
void add(ll &x,ll y){x=(x+y)%mod;
}
ll f[55][55];
int id[55];
ll res[55];
ll fpow(ll x,ll y=mod-2){ll z(1);for(;y;y>>=1){if(y&1)z=z*x%mod;x=x*x%mod;}return z;
}
ll g[65];
void ins(int x){for(int i=1;i<=K;i++)g[i]=a[x][i];for(int i=1;i<=K;i++){if(g[i]){if(f[i][i]==0){for(int j=i;j<=K;j++)f[i][j]=g[j];id[i]=x;return;}if(x>id[i]){swap(x,id[i]);for(int j=i;j<=K;j++)swap(f[i][j],g[j]);}ll tmp=g[i]*fpow(f[i][i])%mod;for(int j=i;j<=K;j++)g[j]=(g[j]-f[i][j]*tmp)%mod;}}
}
int main(){ios::sync_with_stdio(false);cin.tie(0),cout.tie(0);cin>>n>>m>>K;for(int i=1;i<=m;i++){int x,y,z;cin>>x>>y,z=gen()%mod;G[x].pb({y,z}),du[y]++;}for(int i=1;i<=K;i++){a[i][i]=1;}for(int i=1;i<=n;i++){if(!du[i])Q.push(i);}while(Q.size()){int u=Q.front();Q.pop();vs[u]=1;for(auto e:G[u]){int v=e.fi,w=e.se;for(int i=1;i<=K;i++)add(a[v][i],a[u][i]*w);if(--du[v]==0)Q.push(v);}}for(int i=K+1;i<=n;i++){if(vs[i])ins(i);vector<int>vec;for(int j=1;j<=K;j++)if(id[j])vec.pb(id[j]);sort(vec.begin(),vec.end());int l=K,sz=vec.size();for(int j=0;j<sz;j++){res[sz-j]+=vec[j]-l;l=vec[j];}res[0]+=i-l;}for(int i=0;i<=K;i++)cout<<res[i]<<"\n";
}
http://www.fp688.cn/news/161330.html

相关文章:

  • 加强主流新闻网站建设seo搜索优化是什么呢
  • 网站制作现在赚钱么seo优化推广技巧
  • wordpress 缓慢信阳seo优化
  • 长春仿站定制模板建站百度问答优化
  • 如何自己做网站一年赚一亿旅游营销推广方案
  • 电子政务网站建设公司外链购买交易平台
  • cms网站每日舆情信息报送
  • 做免费网站教程下载百度地图2022最新版
  • 做网站哪家公司好引擎优化是什么工作
  • 自己做网站什么类型的比较好济南seo官网优化
  • 滁州建设厅网站新东方英语培训机构官网
  • 雄县做网站电商运营助理
  • 日本亲子游哪个网站做的好处网络销售怎么找客户
  • 建材 团购 网站怎么做关键词搜索爱站网
  • 网站模板带后台 下载爱网站关键词挖掘工具
  • 用java做网页如何建立网站厨师培训机构
  • 苏州网站搜索引擎优化南昌百度seo
  • 电脑可以做服务器部署网站吗贵阳网络推广外包
  • 怎么制作网站网页谷歌paypal下载
  • 汉化主题做网站谷歌浏览器手机版下载
  • 济南网站开发wuliankj平台外宣推广技巧
  • 佛山建网站定制有源码怎么搭建网站
  • 比特币网站做任务成人本科
  • 网站建设 流程网络推广都有什么方式
  • 台州做网站优化哪家好企拓客软件多少钱
  • 自己公司内网网站和外网怎么做同步交换友情链接的渠道有哪些
  • 重庆网站建设培训免费注册域名网站
  • 网站做众筹需哪些条件china东莞seo
  • 网站建设误区图交易平台官网
  • 有货 那样的网站怎么做网络营销企业是什么