当前位置: 首页 > news >正文

做网站要审批吗win7运行速度提高90%

做网站要审批吗,win7运行速度提高90%,上海外贸论坛,犀浦网站建设OSQP官方文档 1 QSQP简介 OSQP求解形式为的凸二次规划: x ∈ R n x∈R^n x∈Rn:优化变量 P ∈ S n P∈S^n_ P∈Sn​:半正定矩阵 特征 (1)高效:使用了一种自定义的基于ADMM的一阶方法,只需…

OSQP官方文档

1 QSQP简介

OSQP求解形式为的凸二次规划:
在这里插入图片描述
x ∈ R n x∈R^n xRn:优化变量
P ∈ S + n P∈S^n_+ PS+n:半正定矩阵

特征
(1)高效:使用了一种自定义的基于ADMM的一阶方法,只需要在设置阶段进行单个矩阵分解。
(2)鲁棒:该算法设置之后不需要对问题数据进行假设(问题只需要是凸的)。
(3)原始/对偶不可行问题:当问题是原始或对偶不可行时,OSQP会检测到它。这是第一个基于一阶方法的QP求解器。
(4)可嵌入:有一个简单的接口来生成定制的可嵌入C代码,而不需要内存管理器。
(5)不需要外部库即可运行
(6)可以很容易地进行热启动,并且可以缓存矩阵分解,以非常有效地解决参数化问题
(7)接口:提供了到C、C++、Fortran、Julia、Matlab、Python、R、Ruby和Rust的接口

2 OSQP求解器

在这里插入图片描述
求解器运行以下ADMM算法:
在这里插入图片描述
Π \Pi Π:投影到超盒上 [ l , u ] [l,u] [l,u] ρ \rho ρ是ADMM步长
Linear system solution
线性系统解是算法的核心部分。它可以使用直接或间接的方法来完成。
使用直接线性系统求解器,我们求解以下具有拟定矩阵的线性系统:
在这里插入图片描述
使用间接线性系统求解器,我们求解以下具有正定矩阵的线性系统:
在这里插入图片描述
OSQP核心旨在支持不同的线性系统求解器。

Convergence
在每k次迭代时,OSQP生成一个元组 ( x k , z k , y k ) (x^k,z^k,y^k) (xk,zk,yk)
x k ∈ R n , z k 、 y k ∈ R m x^k∈R^n,z^k、y^k∈R^m xkRn,zkykRm
( x k , z k , y k ) (x^k,z^k,y^k) (xk,zk,yk)相关的原始残差和对偶残差:
在这里插入图片描述
在这里插入图片描述
#pic
不可行问题
OSQP能够检测问题是原始不可行还是对偶不可行。
在这里插入图片描述

3 Get started

安装:
Linux操作系统,默认gcc,cmake已经安装好
① 克隆存储库

git clone https://github.com/osqp/osqp

② 创建目录和更改目录build

cd osqp
mkdir build
cd build

③ 创建 Makefile

cmake -G "Unix Makefiles" ..

④ 编译 OSQP

cmake --build .

C语言:
在 CMake 项目中包括 OSQP,具体取决于您需要共享库还是静态库:

# Find OSQP library and headers
find_package(osqp REQUIRED)# Link the OSQP shared library
target_link_libraries(yourTarget PRIVATE osqp::osqp)# or...# Link the OSQP static library
target_link_libraries(yourTarget PRIVATE osqp::osqpstatic)

4 接口

OSQP有几个接口。以下链接中显示了有关设置、状态值以及如何指定不同线性系统解算器的信息
Solver settings
Linear Systems Solvers
Status values

在这里插入图片描述
在这里插入图片描述
C:github.com/osqp/osqp
C++:github.com/robotology/osqp-eigen

5 Examples

Demo:
① Setup and solve :设置和求解
在这里插入图片描述
C:

#include <stdlib.h>
#include "osqp.h"int main(int argc, char **argv) {/* Load problem data */OSQPFloat P_x[3] = {4.0, 1.0, 2.0, };OSQPInt P_nnz = 3;OSQPInt P_i[3] = {0, 0, 1, };OSQPInt P_p[3] = {0, 1, 3, };OSQPFloat q[2] = {1.0, 1.0, };OSQPFloat A_x[4] = {1.0, 1.0, 1.0, 1.0, };OSQPInt A_nnz = 4;OSQPInt A_i[4] = {0, 1, 0, 2, };OSQPInt A_p[3] = {0, 2, 4, };OSQPFloat l[3] = {1.0, 0.0, 0.0, };OSQPFloat u[3] = {1.0, 0.7, 0.7, };OSQPInt n = 2;OSQPInt m = 3;/* Exitflag */OSQPInt exitflag = 0;/* Solver, settings, matrices */OSQPSolver   *solver;OSQPSettings *settings;OSQPCscMatrix* P = malloc(sizeof(OSQPCscMatrix));OSQPCscMatrix* A = malloc(sizeof(OSQPCscMatrix));/* Populate matrices */csc_set_data(A, m, n, A_nnz, A_x, A_i, A_p);csc_set_data(P, n, n, P_nnz, P_x, P_i, P_p);/* Set default settings */settings = (OSQPSettings *)malloc(sizeof(OSQPSettings));if (settings) {osqp_set_default_settings(settings);settings->alpha = 1.0; /* Change alpha parameter */}/* Setup solver */exitflag = osqp_setup(&solver, P, q, A, l, u, m, n, settings);/* Solve problem */if (!exitflag) exitflag = osqp_solve(solver);/* Cleanup */osqp_cleanup(solver);if (A) free(A);if (P) free(P);if (settings) free(settings);return (int)exitflag;
};

② Update vectors:更新向量
在这里插入图片描述

#include <stdlib.h>
#include "osqp.h"int main(int argc, char **argv) {/* Load problem data */OSQPFloat P_x[3] = {4.0, 1.0, 2.0, };OSQPInt P_nnz = 3;OSQPInt P_i[3] = {0, 0, 1, };OSQPInt P_p[3] = {0, 1, 3, };OSQPFloat q[2] = {1.0, 1.0, };OSQPFloat q_new[2] = {2.0, 3.0, };OSQPFloat A_x[4] = {1.0, 1.0, 1.0, 1.0, };OSQPInt A_nnz = 4;OSQPInt A_i[4] = {0, 1, 0, 2, };OSQPInt A_p[3] = {0, 2, 4, };OSQPFloat l[3] = {1.0, 0.0, 0.0, };OSQPFloat l_new[3] = {2.0, -1.0, -1.0, };OSQPFloat u[3] = {1.0, 0.7, 0.7, };OSQPFloat u_new[3] = {2.0, 2.5, 2.5, };OSQPInt n = 2;OSQPInt m = 3;/* Exitflag */OSQPInt exitflag = 0;/* Solver, settings, matrices */OSQPSolver   *solver;OSQPSettings *settings;OSQPCscMatrix* P = malloc(sizeof(OSQPCscMatrix));OSQPCscMatrix* A = malloc(sizeof(OSQPCscMatrix));/* Populate matrices */csc_set_data(A, m, n, A_nnz, A_x, A_i, A_p);csc_set_data(P, n, n, P_nnz, P_x, P_i, P_p);/* Set default settings */settings = (OSQPSettings *)malloc(sizeof(OSQPSettings));if (settings) osqp_set_default_settings(settings);/* Setup solver */exitflag = osqp_setup(&solver, P, q, A, l, u, m, n, settings);/* Solve problem */if (!exitflag) exitflag = osqp_solve(solver);/* Update problem */if (!exitflag) exitflag = osqp_update_data_vec(solver, q_new, l_new, u_new);/* Solve updated problem */if (!exitflag) exitflag = osqp_solve(work);/* Cleanup */osqp_cleanup(solver);if (A) free(A);if (P) free(P);if (settings) free(settings);return (int)exitflag;
};

③ Update matrices:更新矩阵P和A
在这里插入图片描述

#include <stdlib.h>
#include "osqp.h"int main(int argc, char **argv) {/* Load problem data */OSQPFloat P_x[3] = {4.0, 1.0, 2.0, };OSQPFloat P_x_new[3] = {5.0, 1.5, 1.0, };OSQPInt P_nnz = 3;OSQPInt P_i[3] = {0, 0, 1, };OSQPInt P_p[3] = {0, 1, 3, };OSQPFloat q[2] = {1.0, 1.0, };OSQPFloat q_new[2] = {2.0, 3.0, };OSQPFloat A_x[4] = {1.0, 1.0, 1.0, 1.0, };OSQPFloat A_x_new[4] = {1.2, 1.5, 1.1, 0.8, };OSQPInt A_nnz = 4;OSQPInt A_i[4] = {0, 1, 0, 2, };OSQPInt A_p[3] = {0, 2, 4, };OSQPFloat l[3] = {1.0, 0.0, 0.0, };OSQPFloat l_new[3] = {2.0, -1.0, -1.0, };OSQPFloat u[3] = {1.0, 0.7, 0.7, };OSQPFloat u_new[3] = {2.0, 2.5, 2.5, };OSQPInt n = 2;OSQPInt m = 3;/* Exitflag */OSQPInt exitflag = 0;/* Solver, settings, matrices */OSQPSolver   *solver;OSQPSettings *settings;OSQPCscMatrix* P = malloc(sizeof(OSQPCscMatrix));OSQPCscMatrix* A = malloc(sizeof(OSQPCscMatrix));/* Populate matrices */csc_set_data(A, m, n, A_nnz, A_x, A_i, A_p);csc_set_data(P, n, n, P_nnz, P_x, P_i, P_p);/* Set default settings */settings = (OSQPSettings *)malloc(sizeof(OSQPSettings));if (settings) osqp_set_default_settings(settings);/* Setup solver */exitflag = osqp_setup(&solver, P, q, A, l, u, m, n, settings);/* Solve problem */if (!exitflag) exitflag = osqp_solve(solver);/*  Update problemNB: Update only upper triangular part of P*/if (!exitflag) exitflag = osqp_update_data_mat(solver,P_x_new, OSQP_NULL, 3,A_x_new, OSQP_NULL, 4);/* Solve updated problem */if (!exitflag) exitflag = osqp_solve(work);/* Cleanup */osqp_cleanup(solver);if (A) free(A);if (P) free(P);if (settings) free(settings);return (int)exitflag;
};

应用:
① Huber fitting
② Lasso
③ Least-squares:最小二乘法
④ Model predictive control (MPC)
我们考虑将线性时不变动力系统控制到某个参考状态的问题。 为了实现这一点,我们使用约束线性二次 MPC,它在每个时间步长求解以下有限视界最优控制问题 x r ∈ R n x x_r∈R^{n_x} xrRnx
在这里插入图片描述

⑤ Portfolio optimization
⑥ Support vector machine (SVM):支持向量机

http://www.fp688.cn/news/159951.html

相关文章:

  • jsp做的当当网站的文档中央突然宣布一个大消息
  • 所有网站大全百度发布
  • 做视频网站 买带宽百度推广如何计费
  • 网站后台 英语正规拉新推广平台有哪些
  • 北京有哪些大型互联网公司windows优化大师是病毒吗
  • 注册个人网站的方法网页制作
  • 信阳网站建设培训班有哪些课程
  • 成都企业网站seo技术百度大搜数据多少钱一条
  • 高端网站建设企业文化经典句子
  • wordpress密文seo关键词优化技巧
  • 安徽和县住房城乡建设局网站百度com打开
  • 吉林省建设厅网站首页企业宣传软文
  • 用shopify 做网站seo排名优化哪家好
  • 加人引流加人网站怎么做推广之家
  • 自己做网站靠挂百度站长统计网站大全
  • 随州网站建设海南网站推广
  • 网站logo在哪里谷歌在线浏览入口
  • 专业营销网站带客西安疫情最新消息1小时内
  • 安阳网站建设公司出租车公司职业培训机构排名
  • 传统网站建设 成本优秀网站seo报价
  • 网页源代码怎么查找部分内容北京网站建设东轩seo
  • 嘉定网站设计合肥网站优化推广方案
  • 没有备案的网站怎么访问如何给自己的公司建网站
  • 看网站不受限制的浏览器有哪些单页应用seo如何解决
  • 网页网站banner图片怎么做竞价推广托管
  • 网站备案跟做哪个推广有关系吗百度搜索引擎seo
  • 如何做deal网站推广网上销售推广方案
  • 网站建设要花多少钱金华关键词优化平台
  • 淘宝拍卖网官网首页官方进一步优化
  • 哪家企业建设网站好网络营销技能大赛优秀作品