当前位置: 首页 > news >正文

上海最好的网站设计公司nba体育新闻

上海最好的网站设计公司,nba体育新闻,沈阳优化网站,莱芜金点子广告电子版最新文章目录 地区地址提取完成的处理代码 在专利合作申请表中,有多家公司合作申请。在专利权人地址中, 有多个公司的地址信息。故想利用这里多个地址。想用这里的地址来代表区域之间的专利合作情况代表区域之间的协同、协作情况。 下图是专利合作表的一部分…

文章目录

    • 地区地址提取
    • 完成的处理代码

在专利合作申请表中,有多家公司合作申请。在专利权人地址中, 有多个公司的地址信息。故想利用这里多个地址。想用这里的地址来代表区域之间的专利合作情况代表区域之间的协同、协作情况。

下图是专利合作表的一部分:

image-20250227200812529

最终的结果:

image-20250227201838199

假设在一个专利的地址中,有1家成都公司,1家武汉公司,2家北京公司:

成都市,武汉市,北京市,北京市

首先计算这些区域两两合作的关系:

import pandas as pd
from itertools import permutations
from collections import Counter
d = Counter(list(permutations(["成都市", "武汉市", "北京市", "北京市"], r=2)))
d

输出:

Counter({('成都市', '北京市'): 2,('武汉市', '北京市'): 2,('北京市', '成都市'): 2,('北京市', '武汉市'): 2,('北京市', '北京市'): 2,('成都市', '武汉市'): 1,('武汉市', '成都市'): 1})
rows = []
cols = []
values = []for k, v in d.items():row, col = krows.append(row)cols.append(col)values.append(v)demo_matrix = pd.DataFrame({"row": rows,"col": cols,"value": values,}
)
demo_df = demo_matrix.pivot(index="row", columns="col", values="value")
demo_df.fillna(0, inplace=True)
demo_df

输出:

image-20250227202716646

上述只是使用了一个专利合作地址构建的合作矩阵。特意选取了其中有多个同一个地区的例子进行展示。如上述例子中,同一个专利中有两家北京的企业,那么 北京-北京 的权重是2。代表了这个区域内部的合作关系。

地区地址提取

从专利的地址中,提取出省市信息。
最开始想的是写一个正则表达式,提取省市区,但是后面发现这不可行,因为会有自治区、省道,这些特殊名称的干扰。

为了达到比较高的准确率,我收集了全国66万个行政区划代码表,在其中逐个与专利的地址逐个对应。通过这种方式可以保证比较高的准确率。

image-20250227203734452

由于本次使用省与市的地址,使用下述代码筛选出只有省和市的数据,筛选代码如下:

address_df = pd.read_csv("66万个全国各级行政区划代码表.csv")
def is_str(item):return isinstance(item, str) and len(item) > 0
idxs = ((address_df["1"].apply(is_str))& (address_df["2"].apply(is_str))& (~address_df["3"].apply(is_str))
)
address_filter_df = address_df[idxs]
address_filter_df = address_filter_df.drop(columns=["3", "4", "5"])
address_filter_df = address_filter_df.rename(columns={"1": "prov", "2": "city"})

下图展示全国342个市级单位:

address_filter_df.head(), address_filter_df.shape

image-20250227203959220

完成的处理代码

处理整个表格的时候,把所有专利的区域合作次数加起来的代码如下:

加载专利合作表:

def split_address(text):if not isinstance(text, str):return []text = re.split(";", text)text = [item.strip() for item in text if len(item.strip()) > 0]return textaddress1 = "当前专利权人地址"
address2 = "工商注册地址"df = pd.read_excel("20250212合作申请.xlsx")

下述代码实现了,从专利地址中抽取出省市信息:

def extract_address(df, address) -> Dict:# 首先是直辖市判断Four_Municipality = ["北京市", "上海市", "天津市", "重庆市"]for item in Four_Municipality:if item in address:return {"prov": item, "city": ""}for _, row in df.iterrows():prov = row["prov"]city = row["city"]if prov in address and city in address:return {"prov": prov, "city": city}print(f"error not find prov and city, {address}")return None

利用抽取出的省、市,构建矩阵:

def build_marix(attr_name):addresses = df[address1].map(split_address).tolist()ans = {}for row_address in addresses:row_address_parse = []for address in row_address:address_parse = extract_address(address_filter_df, address)if address_parse is None:continuerow_address_parse.append(address_parse)row_address_parse = [tmp["prov"] + " " + tmp["city"] for tmp in row_address_parse]row_address_cnt = Counter(list(permutations(row_address_parse, r=2)))for k, v in row_address_cnt.items():if k not in ans.keys():ans[k] = 0ans[k] += vrows = []cols = []values = []for k, v in ans.items():row, col = krows.append(row)cols.append(col)values.append(v)df_matrix = pd.DataFrame({"row": rows,"col": cols,"value": values,})pivot_df = df_matrix.pivot(index="row", columns="col", values="value")pivot_df.fillna(0, inplace=True)pivot_df.to_excel(f"{attr_name}.xlsx")

项目文件夹的内容如下:

image-20250227204945954

http://www.fp688.cn/news/158255.html

相关文章:

  • 网站设计banner尺寸化妆培训
  • 发行商城小程序搜索优化是什么意思
  • 淄博网站建设报价网站营销策划公司
  • 南充网站建设公司软文推广新闻发布
  • wordpress破解主题分享下载天津seo博客
  • 专业网网站建设全网关键词指数查询
  • 怎么用ppt做网站设计百度搜索词排名
  • 网站是如何做的好湖南关键词优化品牌价格
  • 学校网站建设制作方案网站关键词怎样优化
  • 西安做网站谷歌排名优化入门教程
  • 网站建设价格费用安徽搜索引擎优化
  • 你知道吗 网站百度联盟个人怎么接广告
  • 菠菜网站搭建怎么做域名注册服务网站
  • 做装修效果图的网站有哪些软件下载网络营销策略存在的问题
  • 网站为什么做优化ppt无限制访问国外的浏览器
  • 网站建设的大概费用人民日报今日头条新闻
  • 网站备案 快递南宁seo标准
  • 淘宝客cms网站怎么做十堰seo排名公司
  • wordpress 获取文章标题天津seo关键词排名优化
  • 软件开发和网站建设哪个好seo教程 seo之家
  • 网站维护的内容百度关键字搜索量查询
  • 网站优化排名方案常州网站优化
  • 网站描述代码怎么写网络推广经验
  • 太原建设工程信息网页面优化
  • 网站建设 中企动力南通seo外链工具有用吗
  • 网站建设的网站郑州众志seo
  • 做僾网站游戏推广怎么做
  • 徐州人才网前程无忧windows 优化大师
  • 做网站cpa百度搜索高级搜索技巧
  • 网站建设实训步骤市场seo是什么