当前位置: 首页 > news >正文

asp网站建设mdb文件国际新闻直播

asp网站建设mdb文件,国际新闻直播,电台网站建设要求,wordpress搬家问题1.介绍 B树是一种自平衡的搜索树数据结构,常用于数据库和文件系统中的索引结构。它具有以下好处和功能: 高效的查找操作:B树的特点是每个节点可以存储多个关键字,并且保持有序。通过在节点上进行二分查找,可以快速定位…

1.介绍

B树是一种自平衡的搜索树数据结构,常用于数据库和文件系统中的索引结构。它具有以下好处和功能:

  1. 高效的查找操作:B树的特点是每个节点可以存储多个关键字,并且保持有序。通过在节点上进行二分查找,可以快速定位目标关键字的位置,从而实现高效的查找操作。

  2. 平衡性:B树通过自平衡的方式维护树的平衡性,即保证树的每个叶子节点到根节点的路径长度相等。这种平衡性能够确保各种操作的时间复杂度保持在较低水平,例如插入、删除和查找等操作都可以在对数时间内完成。

  3. 适应大型数据集:B树适用于存储大型数据集,并且可以处理非常大的索引。其节点可以存储多个关键字,因此在相同层数的情况下,B树可以存储更多的数据。

  4. 支持范围查询:由于B树的节点有序,因此可以很方便地进行范围查询。通过定位范围的起始和结束关键字所在的节点,可以快速地获取指定范围内的数据。

  5. 高效的插入和删除操作:B树通过平衡性的维护,使得插入和删除操作具有较低的时间复杂度。它可以通过调整节点的结构,避免过深或过浅的树结构,从而保持树的平衡。

总的来说,B树是一种高效的数据结构,能够应对大规模数据集的索引需求,并提供快速的查找、插入和删除操作。它在数据库和文件系统中广泛应用,为数据的组织和访问提供了便利。

2.代码分析

1.分裂

当键的数量超过 2t - 1的时候就会进行分裂操作,规则就是中间的向上分裂,大的交给一个新的节点,小的交给自己

如果不是叶子节点就需要把后半部分子节点给新的节点,

2.添加

  1. 首先,根据给定的关键字,从根节点开始向下搜索,找到合适的叶子节点。

  2. 在叶子节点中插入新的关键字。如果叶子节点未满,直接插入;否则,执行步骤3。

  3. 当叶子节点已满时,需要进行分裂操作。将当前节点一分为二,得到两个新的叶子节点,并选择一个关键字提升到父节点中。

  4. 如果父节点也已满,则重复步骤3,层层递归地向上分裂,直到找到一个非满节点或达到树的顶部。

  5. 完成插入操作后,需要更新祖先节点的关键字信息。如果某个节点发生了分裂,它提升的关键字需要插入到其父节点中,并根据大小顺序进行调整。

通过以上步骤,B树的插入操作可以保持树的平衡性。在插入过程中,B树会根据节点的容量进行自动调整,使得树的高度保持相对较低,从而确保各种操作的效率。

需要注意的是,在插入操作中可能会出现关键字重复的情况。对于B树来说,可以允许存在相同的关键字,而在查找操作时,会按照节点中关键字的大小顺序进行搜索。因此,在插入过程中需要根据具体需求来处理关键字重复的情况。

3.查找

  1. 从根节点开始,比较要查找的关键字与当前节点中的关键字。

  2. 如果找到了匹配的关键字,则表示查找成功,结束操作。

  3. 如果要查找的关键字小于当前节点的最小关键字,则进入当前节点的左子树进行继续查找。

  4. 如果要查找的关键字大于当前节点的最大关键字,则进入当前节点的右子树进行继续查找。

  5. 重复步骤 3 和 4,直到找到匹配的关键字或者到达叶子节点。

  6. 如果到达叶子节点仍然没有找到匹配的关键字,则表示查找失败,结束操作。

在B树的查找过程中,关键字的比较会指导搜索方向,通过不断地按照关键字的大小顺序向下搜索,可以快速地找到目标关键字或者判断其不存在。

需要注意的是,B树中允许存在相同的关键字,因此在查找操作中,如果存在多个相同的关键字,可以根据具体需求选择返回其中一个或全部。此外,B树的查找操作具有较好的平均时间复杂度,可以在较短的时间内完成查询。

3.代码实现

1.准备工作

//节点类
class BTreeNode {// B树的阶数int t;List<Integer> keys;//关键字List<BTreeNode> childNodes;//孩子boolean leaf;//判断节点是否是叶子结点public BTreeNode(int t, boolean leaf) {this.t = t;this.leaf = leaf;this.keys = new ArrayList<>();this.childNodes = new ArrayList<>();}
}

2.升序遍历树

 public void traverse() {int i;for (i = 0; i < keys.size(); i++) {if (!leaf) {//去索引为i的孩子里面继续找childNodes.get(i).traverse();}System.out.print(keys.get(i) + " ");}//最后还剩一个关键字的孩子节点if (!leaf) {childNodes.get(i).traverse();}}

3.查找值所在的位置

 public int search(int key) {int i = 0;//先找到比值小和等的节点 然后小的递归找孩子while (i < keys.size() && key > keys.get(i)) {i++;}//等的if (i < keys.size() && key == keys.get(i)) {return i;} else if (leaf) {//都到叶子了还没找到就无了return -1;} else {//递归继续去他的子节点找  小的return childNodes.get(i).search(key);}}

4.添加

 public void insertNonFull(int key) {//处理节点未满的情况int i = keys.size() - 1;if (leaf) {//叶节点while (i >= 0 && key < keys.get(i)) {//从后往前 找出比你小的那个ii--;}keys.add(i + 1, key);//因为第i个位置是比你小的,所以你要插入后面一个} else {//非叶节点while (i >= 0 && key < keys.get(i)) {//找到要插入子节点的位置i--;}//判断子节点是否需要分裂操作if (childNodes.get(i + 1).keys.size() == (2 * t) - 1) {splitChild(i + 1, childNodes.get(i + 1));if (key > keys.get(i + 1)) {i++;}}//分裂完毕 或者 不需要分裂 递归插入childNodes.get(i + 1).insertNonFull(key);}}

5.分裂

 public void splitChild(int i, BTreeNode y) {//处理节点满的情况进行分裂操作BTreeNode z = new BTreeNode(y.t, y.leaf);keys.add(i, y.keys.get(t - 1));//中间的上移childNodes.add(i + 1, z);//创建新的孩子for (int j = 0; j < t - 1; j++) {//后面的移动到新的里面z.keys.add(j, y.keys.get(j + t));}if (!y.leaf) {//后半部分子节点移动到新的节点for (int j = 0; j < t; j++) {z.childNodes.add(j, y.childNodes.get(j + t));}}//主要总用时为了情况没有用的部分//获取被拆分节点后半部分的关键字和子节点部分。y.keys.subList(t - 1, y.keys.size()).clear();//方法用于删除列表中的元素(获取完删除)y.childNodes.subList(t, y.childNodes.size()).clear();}
}

6.遍历查询

class BTree {BTreeNode root;//根节点int t;//树中的最小度数//指定默认树的度数是2public BTree() {this(2);}public BTree(int t) {this.root = null;this.t = t;}//遍历树public void traverse() {//树不为空就可以遍历if (root != null) {root.traverse();}}//查找节点的位置public int search(int key) {if (root != null) {return root.search(key);}return -1;}//插入节点public void insert(int key) {if (root == null) {root = new BTreeNode(t, true);root.keys.add(0, key);} else {if (root.keys.size() == (2 * t) - 1) {BTreeNode s = new BTreeNode(t, false);s.childNodes.add(0, root);s.splitChild(0, root);int i = 0;if (s.keys.get(0) < key) {i++;}s.childNodes.get(i).insertNonFull(key);root = s;} else {root.insertNonFull(key);}}}
}

http://www.fp688.cn/news/155835.html

相关文章:

  • 河北精品网站建设站长工具ip地址
  • 咋样着做自己的网站今日国内新闻大事
  • 成都市公园城市建设管理局网站对网站和网页的认识
  • 淘宝搜索框去什么网站做百度一下打开
  • 金科科技 做网站国外b站视频推广网站
  • 沈阳城市建设学院网站北京营销型网站
  • 电商网站建设关键词优化免费seo关键词优化排名
  • 深圳模板网站建设北京seo分析
  • 网站建设插入图片怎么加seo是什么职位简称
  • 如何找到网站的模板页面舆情优化公司
  • 惠州做网站乐云seo国外免费ip地址
  • 个人做电商网站赚钱吗东莞搜索引擎推广
  • 做网站有用没现在做百度快速收录的方法
  • 武汉平价做网站百度快照投诉中心
  • 做网站的app网络营销产品的特点
  • 建网站必须要服务器吗郑州seo技术外包
  • 做网站要学什么今天上海最新新闻事件
  • 汕头网站推广公司南京seo网站优化推广
  • 做前端网站考虑兼容分辨率专业seo优化公司
  • 做攻略的网站好制作公司网站的公司
  • 临朐网站建设咨询应用商店关键词优化
  • 菲律宾菠菜网站建设国内ip地址 免费
  • 个人网站备案备注怎么写重庆的seo服务公司
  • 可以做书的网站营销推广有哪些形式
  • 北京专做粮油米面的配送网站谷歌外贸网站推广
  • wordpress安装首页怎么写网站seo基础优化
  • 大连中小网站建设公司企业网站推广方案策划
  • 浏览器看b站百度推广点击收费标准
  • wordpress 操作系统新野seo公司
  • 做网站建设专业定制如何创建网站教程