当前位置: 首页 > news >正文

宁波电器网站制作网站免费推广平台

宁波电器网站制作,网站免费推广平台,使用dw设计个人简历网页模板,如何做网站导航栏低阶张量操作是所有现代机器学习的底层架构,可以转化为TensorFlow API。 张量,包括存储神经网络状态的特殊张量(变量)​。 张量运算,比如加法、relu、matmul。 反向传播,一种计算数学表达式梯度的方法&…

低阶张量操作是所有现代机器学习的底层架构,可以转化为TensorFlow API。

张量,包括存储神经网络状态的特殊张量(变量)​。
张量运算,比如加法、relu、matmul。
反向传播,一种计算数学表达式梯度的方法(在TensorFlow中通过GradientTape对象来实现)​。

然后是高阶深度学习概念。这可以转化为Keras API。

,多层可以构成模型。
损失函数,它定义了用于学习的反馈信号。(必须是可微的)
优化器,它决定学习过程如何进行。
评估模型性能的指标,比如精度。
训练循环,执行小批量梯度随机下降。

常数张量和变量

要使用TensorFlow,我们需要用到一些张量。创建张量需要给定初始值。例如,可以创建全1张量或全0张量(见代码清单3-1)​,也可以从随机分布中取值来创建张量(见代码清单3-2)​。

代码清单3-1 全1张量或全0张量

import tensorflow as tf
x = tf.ones(shape=(2, 1))
#←----等同于np.ones(shape=(2, 1))
print(x)
x = tf.zeros(shape=(2, 1))
#←----等同于np.zeros(shape=(2, 1))
print(x)

代码清单3-2 随机张量

x = tf.random.normal(shape=(3, 1), mean=0., stddev=1.)
#←----从均值为0、标准差为1的正态分布中抽取的随机张量,等同于np.random.normal(size=(3, 1), loc=0., scale=1.)
# mean的中文含义就是均值print(x)x = tf.random.uniform(shape=(3, 1), minval=0., maxval=1.)
#←----从0和1之间的均匀分布中抽取的随机张量,等同于np.random.uniform(size=(3, 1), low=0., high=1.)
print(x)

NumPy数组和TensorFlow张量之间的一个重要区别是,TensorFlow张量是不可赋值的,它是常量。举例来说,在NumPy中,你可以执行以下操作,如代码清单3-3所示。

代码清单3-3 NumPy数组是可赋值的

import numpy as np
x = np.ones(shape=(2, 2))
x[0, 0] = 0.

如果在TensorFlow中执行同样的操作(如代码清单3-4所示)​,那么程序会报错:EagerTensor object does not support item assignment(EagerTensor对象不支持对元素进行赋值)​。

代码清单3-4 TensorFlow张量是不可赋值的

x = tf.ones(shape=(2, 2))----程序会报错,因为张量是不可赋值的
x[0, 0] = 0.

要训练模型,我们需要更新其状态,而模型状态是一组张量。如果张量不可赋值,那么我们该怎么做呢?这时就需要用到变量(variable)​。tf.Variable是一个类,其作用是管理TensorFlow中的可变状态。要创建一个变量,你需要为其提供初始值,比如随机张量,如代码清单3-5所示。

>>> v = tf.Variable(initial_value=tf.random.normal(shape=(3, 1)))
>>> print(v)
array([[-0.75133973],[-0.4872893 ],[ 1.6626885 ]], dtype=float32)

变量的状态可以通过其assign方法进行修改,如代码清单3-6所示。

代码清单3-6 为TensorFlow变量赋值

>>> v.assign(tf.ones((3, 1)))
array([[1.],[1.],[1.]], dtype=float32)

这种方法也适用于变量的子集,如代码清单3-7所示。

代码清单3-7 为TensorFlow变量的子集赋值

>>> v[0, 0].assign(3.)
array([[3.],[1.],[1.]], dtype=float32)

与此类似,assign_add()和assign_sub()分别等同于+=和-=的效果,如代码清单3-8所示。

代码清单3-8 使用assign_add()

>>> v.assign_add(tf.ones((3, 1)))
array([[2.],[2.],[2.]], dtype=float32)

就像NumPy一样,TensorFlow提供了许多张量运算来表达数学公式。我们来看几个例子,如代码清单3-9所示。

代码清单3-9 一些基本的数学运算

a = tf.ones((2, 2))
b = tf.square(a)----求平方
c = tf.sqrt(a)----求平方根
d = b + c  ←----两个张量(逐元素)相加
e = tf.matmul(a, b)----计算两个张量的积(详见第2章)
e *= d  ←----两个张量(逐元素)相乘

重要的是,代码清单3-9中的每一个运算都是即刻执行的:任何时候都可以打印出当前结果,就像在NumPy中一样。我们称这种情况为急切执行(eager execution)​。

本文可运行全部代码集合,大家可以直接在装了tensorflow的python3环境下运行。

import tensorflow as tf
x = tf.ones(shape=(2, 1))
#←----等同于np.ones(shape=(2, 1))
print(x)
x = tf.zeros(shape=(2, 1))
#←----等同于np.zeros(shape=(2, 1))
print(x)x = tf.random.normal(shape=(3, 1), mean=0., stddev=1.)
#←----从均值为0、标准差为1的正态分布中抽取的随机张量,等同于np.random.normal(size=(3, 1), loc=0., scale=1.)
# mean的中文含义就是均值print(x)x = tf.random.uniform(shape=(3, 1), minval=0., maxval=1.)
#←----从0和1之间的均匀分布中抽取的随机张量,等同于np.random.uniform(size=(3, 1), low=0., high=1.)
print(x)import numpy as np
x = np.ones(shape=(2, 2))
x[0, 0] = 0.print(x)v = tf.Variable(initial_value=tf.random.normal(shape=(3, 1)))
print(v)v.assign(tf.ones((3, 1)))
print(v)v[0, 0].assign(3.)
print(v)v.assign_add(tf.ones((3, 1)))
print(v)
http://www.fp688.cn/news/164964.html

相关文章:

  • xrea WordPress限制合肥seo建站
  • 东丽开发区做网站公司百度指数分析官网
  • 乱起封神是那个网站开发的推广引流的10个渠道
  • 实搜石家庄网站建设小程序网络推销
  • 电源网站模版电商平台排名
  • 逸阳网站建设的目标站长工具百度百科
  • 个人网站源码进一品资源百度手机助手下载安卓版
  • 给网站做翻译中国网站排名网
  • 国内电子商务网站有哪些互动营销是什么意思
  • 用哪个网站做首页比较好上海搜索引擎推广公司
  • 上行10m企业光纤做网站百度贴吧官网app下载
  • wordpress 读取pdf网络优化app
  • wordpress内容清空武汉seo关键词优化
  • 发布视频的平台大全免费手机优化大师下载安装
  • 建设一个企业网站下载手机百度最新版
  • 阿里云搭建公司网站怎么在百度上发布信息
  • 北京公司网站制作流程湖北百度推广电话
  • 网站开发面试推特最新消息今天
  • 网站名查询百度高级搜索
  • 如何搭建网站服务器保定百度首页优化
  • 大兴网站开发网站建设报价十大销售管理软件排行榜
  • 做空调管路网站桂林网站设计制作
  • 网站做自己的超链接sem是什么职业岗位
  • 深圳室内设计网百度推广seo
  • 广告建设网站建设佛山网站优化服务
  • 建设银行网站打不开免费b站软件推广网站
  • 网站策划书总结怎么找推广渠道
  • 凡科小程序教程网站更新seo
  • 网站tag标签功能实现google推广及广告优缺点
  • 简历表格 个人简历手机版泉州百度seo公司