当前位置: 首页 > news >正文

建建建设网站公司网站如何做一个自己的网站

建建建设网站公司网站,如何做一个自己的网站,x wordpress 视差 主题,wordpress 禁止百度转码一、支持向量机(support vector machines. ,SVM)概念 1. SVM 绪论 支持向量机(SVM)的核心思想是找到一个最优的超平面,将不同类别的数据点分开。SVM 的关键特点包括: ① 分类与回归: SVM 可以用于分类&a…

一、支持向量机(support vector machines. ,SVM)概念

1. SVM 绪论

支持向量机(SVM)的核心思想是找到一个最优的超平面,将不同类别的数据点分开。SVM 的关键特点包括:

① 分类与回归

  • SVM 可以用于分类(SVC, Support Vector Classification)和回归(SVR, Support Vector Regression)。

  • 分类任务中,SVM 通过找到一个超平面,最大化不同类别之间的间隔(margin)。

  • 回归任务中,SVM 通过找到一个超平面,使得数据点尽可能接近该超平面。

② 核函数(Kernel)

  • SVM 通过核函数将数据映射到高维空间,从而解决非线性问题。

  • 常用的核函数包括:

               线性核(linear

               多项式核(poly

               径向基核(RBF, rbf

               Sigmoid 核(sigmoid

③ 支持向量

  • 支持向量是离超平面最近的数据点,它们决定了超平面的位置和方向。

2. scikit-learn 中的SVM包

SVC

  • 用于分类任务的支持向量机。

  • 主要参数:

    kernel:核函数类型(如 'linear''rbf' 等)。

    C:正则化参数,控制模型的复杂度。

    gamma:核函数的系数(仅对 'rbf''poly' 和 'sigmoid' 核有效)。

SVR

  • 用于回归任务的支持向量机。

  • 主要参数与 SVC 类似。

LinearSVC

  • 线性支持向量分类器,专门用于线性核的 SVM。

  • 比 SVC(kernel='linear') 更高效。

④ LinearSVR

  • 线性支持向量回归器,专门用于线性核的 SVM 回归。

3. SVM包中的主要参数

kernel

  • 核函数类型,默认为 'rbf'

  • 可选值:'linear''poly''rbf''sigmoid' 或自定义核函数。

C

  • 正则化参数,默认为 1.0

  • 较小的 C 值表示更强的正则化,较大的 C 值表示更弱的正则化。

gamma

  • 核函数的系数,默认为 'scale'(即 1 / (n_features * X.var()))。

  • 较小的 gamma 值表示核函数的影响范围较大,较大的 gamma 值表示核函数的影响范围较小。

④ degree

  • 多项式核的阶数,默认为 3

  • 仅对 kernel='poly' 有效。

⑤ probability

  • 是否启用概率估计,默认为 False

  • 如果为 True,可以使用 predict_proba 方法获取类别概率。

4. SVM示例代码

import numpy as np
from sklearn.svm import SVC
import matplotlib.pyplot as plt# 1. 自定义数据集
np.random.seed(42)
X = np.random.randn(100, 2)  # 100 个样本,每个样本有 2 个特征
y = (X[:, 0] + X[:, 1] > 0).astype(np.int32)  # 根据特征的线性组合生成标签# 2. 初始化 SVM 模型
svm_model = SVC(kernel='linear', C=1.0, random_state=42)# 3. 训练模型
svm_model.fit(X, y)# 4. 可视化决策边界
def plot_decision_boundary(model, X, y):# 创建网格点x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1xx, yy = np.meshgrid(np.arange(x_min, x_max, 0.01),np.arange(y_min, y_max, 0.01))# 预测网格点的类别Z = model.predict(np.c_[xx.ravel(), yy.ravel()])Z = Z.reshape(xx.shape)# 绘制决策边界plt.contourf(xx, yy, Z, alpha=0.8, cmap='viridis')# 绘制样本点plt.scatter(X[:, 0], X[:, 1], c=y, edgecolors='k', marker='o', cmap='viridis')plt.title("SVM 决策边界")plt.xlabel("特征 1")plt.ylabel("特征 2")plt.show()# 可视化决策边界
plot_decision_boundary(svm_model, X, y)

二、SVM类型

1. 线性可分支持向量机(Linear Separable SVM)

① 定义

  • 适用于数据 线性可分 的情况,即存在一个超平面可以将不同类别的样本完全分开。

  • 目标是找到一个最优超平面,使得两类样本之间的间隔(margin)最大化。

② 数学形式

  • 超平面方程:w⋅x+b=0,其中:

        w 是法向量,决定了超平面的方向。

        b 是偏置项,决定了超平面的位置。

  • 优化目标:

\min_{\mathbf{w}, b} \frac{1}{2} \|\mathbf{w}\|^2

  • 约束条件:

y_i (\mathbf{w} \cdot \mathbf{x}_i + b) \geq 1, \quad \forall i

        其中y_i \in \{-1, 1\} 是样本的类别标签。

③ 特点

  • 适用于数据完全线性可分的情况。

  • 通过最大化间隔,提高模型的泛化能力。

2. 线性支持向量机(Linear SVM)

① 定义

  • 适用于数据 近似线性可分 的情况,即数据中存在少量噪声或异常点,无法完全分开。

  • 引入 松弛变量(slack variables),允许部分样本违反间隔约束。

② 数学形式

  • 优化目标:

\min_{\mathbf{w}, b, \xi} \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{i=1}^n \xi_i

  • 约束条件:

y_i (\mathbf{w} \cdot \mathbf{x}_i + b) \geq 1 - \xi_i, \quad \xi_i \geq 0, \quad \forall i

        其中:

                \xi_i是松弛变量,表示第i个样本违反间隔约束的程度。

                C是正则化参数,控制模型对误分类的惩罚力度。

③ 特点

  • 通过引入松弛变量,允许部分样本误分类,提高模型的鲁棒性。

  • 适用于数据近似线性可分的情况。

3. 非线性支持向量机(Nonlinear SVM)

① 定义

  • 适用于数据 非线性可分 的情况,即无法通过一个超平面将不同类别的样本分开。

  • 通过 核函数(Kernel Function) 将数据映射到高维空间,使得数据在高维空间中线性可分。

② 数学形式

  • 核函数的作用是将原始特征空间映射到高维特征空间:

\phi: \mathbb{R}^d \to \mathbb{R}^D

        其中D > d,甚至可以是无限维。

  • 优化目标:

\min_{\mathbf{w}, b, \xi} \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{i=1}^n \xi_i

  • 约束条件:

y_i (\mathbf{w} \cdot \phi(\mathbf{x}_i) + b) \geq 1 - \xi_i, \quad \xi_i \geq 0, \quad \forall i

③ 常用核函数

  • 线性核(Linear Kernel)

K(\mathbf{x}_i, \mathbf{x}_j) = \mathbf{x}_i \cdot \mathbf{x}_j

  • 多项式核(Polynomial Kernel)

K(\mathbf{x}_i, \mathbf{x}_j) = (\gamma \mathbf{x}_i \cdot \mathbf{x}_j + r)^d

  • 径向基核(RBF Kernel)

K(\mathbf{x}_i, \mathbf{x}_j) = \exp(-\gamma \|\mathbf{x}_i - \mathbf{x}_j\|^2)

  • Sigmoid 核(Sigmoid Kernel)

K(\mathbf{x}_i, \mathbf{x}_j) = \tanh(\gamma \mathbf{x}_i \cdot \mathbf{x}_j + r)

④ 特点

  • 通过核函数,可以处理非线性可分的数据。

  • 核函数的选择对模型性能有重要影响。

4. 总结

类型适用场景核心思想关键参数/技术
线性可分支持向量机数据完全线性可分最大化间隔无松弛变量
线性支持向量机数据近似线性可分允许部分样本误分类松弛变量、正则化参数 C
非线性支持向量机数据非线性可分通过核函数映射到高维空间核函数、正则化参数 C
  • 线性可分支持向量机 是理想情况,现实中较少见。

  • 线性支持向量机 通过引入松弛变量,提高了模型的鲁棒性。

  • 非线性支持向量机 通过核函数,可以处理复杂的非线性问题。

三、自定义数据集 使用scikit-learn中svm的包实现svm分类

1. 代码示例

import numpy as np
from sklearn.svm import SVC
import matplotlib.pyplot as plt# 1. 自定义数据集
# 生成 200 个样本,每个样本有 2 个特征
np.random.seed(42)  # 设置随机种子以确保结果可重复
X = np.random.randn(200, 2).astype(np.float32)
# 根据特征的线性组合生成标签,大于 0 标记为 1,否则标记为 0
y = (2 * X[:, 0] + 3 * X[:, 1] > 0).astype(np.int32)# 2. 初始化 SVM 模型
# 使用线性核函数
svm_model = SVC(kernel='linear', random_state=42)# 3. 训练模型
svm_model.fit(X, y)# 4. 可视化决策边界和支持向量
def plot_decision_boundary(model, X, y):# 创建网格点x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1xx, yy = np.meshgrid(np.arange(x_min, x_max, 0.01),np.arange(y_min, y_max, 0.01))# 预测网格点的类别Z = model.predict(np.c_[xx.ravel(), yy.ravel()])Z = Z.reshape(xx.shape)# 绘制决策边界plt.contourf(xx, yy, Z, alpha=0.8, cmap='viridis')# 绘制样本点plt.scatter(X[:, 0], X[:, 1], c=y, edgecolors='k', marker='o', cmap='viridis')# 绘制支持向量plt.scatter(model.support_vectors_[:, 0], model.support_vectors_[:, 1],s=100, facecolors='none', edgecolors='r', label='支持向量')plt.title("SVM 决策边界")plt.xlabel("特征 1")plt.ylabel("特征 2")plt.legend()plt.show()# 可视化训练集的决策边界和支持向量
plot_decision_boundary(svm_model, X, y)

2. 代码解释

① 自定义数据集

  • X = np.random.randn(200, 2).astype(np.float32)

         生成 200 个样本,每个样本有 2 个特征。

         使用 np.random.randn 生成符合标准正态分布的随机数。

   astype(np.float32) 将数据类型转换为 32 位浮点数。

  • y = (2 * X[:, 0] + 3 * X[:, 1] > 0).astype(np.int32)

         根据特征的线性组合生成标签。

         公式 2 * X[:, 0] + 3 * X[:, 1] > 0 表示特征的线性组合是否大于 0。

         大于 0 的样本标记为 1,否则标记为 0

   astype(np.int32) 将标签转换为 32 位整数。

② 初始化 SVM 模型

  • svm_model = SVC(kernel='linear', random_state=42)

         使用线性核函数初始化 SVM 模型。

         kernel='linear' 表示使用线性核函数。

         random_state=42 确保每次运行代码时结果一致。

③ 训练模型

  • svm_model.fit(X, y)

         使用训练集数据训练 SVM 模型。

④ 可视化决策边界和支持向量

  • plot_decision_boundary 函数:

        绘制 SVM 的决策边界和支持向量。

        使用 np.meshgrid 创建网格点,覆盖整个特征空间。

        使用 model.predict 预测网格点的类别。

        使用 plt.contourf 绘制决策边界。

        使用 plt.scatter 绘制样本点和支持向量。

http://www.fp688.cn/news/163887.html

相关文章:

  • 广州做网站优化优化公司怎么优化网站的
  • 昆山网站网络营销的案例有哪些
  • 香港空间送网站seo公司赚钱吗
  • 做设计什么网站平台好点做私活百度推广投诉人工电话
  • 国际贸易网站建设互联网app推广具体怎么做
  • 自助建站公司衡水今日头条新闻
  • qplayer wordpress搜索引擎优化的方式
  • 杭州网站seo推广软件百度后台推广登录
  • 住房和城乡建设部网站建筑电工画质优化app下载
  • 美食网站建设设计方案如何优化培训体系
  • 网站建设方案详解株洲百度seo
  • wordpress 企业整站西安seo外包
  • 黄骅市人民法院网站seo站外优化
  • 做外贸网站挣钱吗北京百度快照推广公司
  • 网站开发vs2013微信腾讯会议
  • 做计划的网站月入百万的游戏代理
  • xxx网站建设规划书2345网址导航下载桌面
  • 麻城做网站西安seo专员
  • 像聚美网站建设费用手机优化是什么意思
  • 做公司年报网站登录密码是什么俄罗斯引擎搜索
  • 深圳做外贸网站网络营销招聘岗位有哪些
  • 网站模板下载工具16种营销模型
  • 网站架构怎么做潍坊自动seo
  • 学生做网站作品图片怎么做推广让别人主动加我
  • 在阿里云做视频网站需要什么条件互联网推广公司
  • 用于网站建设的费用怎么备注百度快照如何优化
  • 课程网站建设情况关键词大全
  • 美国最大的vps网站策划
  • 长春网站建设小程国内十大搜索引擎网站
  • 淮南市重点工程建设管理局网站优化网站推广网站