当前位置: 首页 > news >正文

建设银行境外购物网站南宁seo费用服务

建设银行境外购物网站,南宁seo费用服务,怎样做浏览的网站不被发现,招远专业做网站公司使用高通滤波器实现同态滤波同态滤波基础实现同态滤波相关链接同态滤波基础 同态滤波是一种去除图像中乘性噪声的技术,常用于校正图像中的不均匀照明。根据图像形成的光照反射模型,图像 f(x,y)f(x,y)f(x,y) 可以由以下两个分量表征: 入射到…

使用高通滤波器实现同态滤波

    • 同态滤波基础
    • 实现同态滤波
    • 相关链接

同态滤波基础

同态滤波是一种去除图像中乘性噪声的技术,常用于校正图像中的不均匀照明。根据图像形成的光照反射模型,图像 f(x,y)f(x,y)f(x,y) 可以由以下两个分量表征:

  • 入射到场景中的光源量
  • 场景中对象反射的光量

根据光照反射模型模型,图像中像素的强度(即对象上的点反射的光)是场景照明和场景中对象反射的结果。傅立叶变换在加法下是线性关联的,但在乘法下并不关联。因此,傅立叶方法仅在将噪声作为原始图像的附加项建模时,才适合从图像中去除噪声。
但是,如果图像的缺陷(例如,不均匀的照明)必须建模为乘法而非加法,则直接应用傅立叶变换并不合适。此时,我们便需要使用同态滤波:首先,通过使用对数将乘法转换为加法;然后,使用对数域中的 HPF 来删除低频照明分量,同时保留高频反射率分量。
同态滤波的基本步骤如下,输入图像为 f(x,y)f(x,y)f(x,y),滤波器的输出为 g(x,y)g(x,y)g(x,y)

同态滤波基本步骤

实现同态滤波

在本节中,我们将学习如何使用 Butterworth HPF 实现同态滤波器。

(1) 首先,导入所需 Python 库,并定义相关函数:

import cv2
import numpy as np
import matplotlib.pyplot as plt
from skimage.color import rgb2gray
from skimage.filters import sobel, threshold_otsudef dft2(im):freq = cv2.dft(np.float32(im), flags = cv2.DFT_COMPLEX_OUTPUT)freq_shift = np.fft.fftshift(freq)mag, phase = freq_shift[:,:,0], freq_shift[:,:,1]return mag + 1j*phasedef idft2(freq):real, imag = freq.real, freq.imagback = cv2.merge([real, imag])back_ishift = np.fft.ifftshift(back)im = cv2.idft(back_ishift, flags=cv2.DFT_SCALE)im = cv2.magnitude(im[:,:,0], im[:,:,1])return imdef butterworth(sz, D0, n=1):h, w = szu, v = np.meshgrid(range(-w//2,w//2), range(-h//2,h//2)) #, sparse=True)return 1 / (1 + (D0/(0.01+np.sqrt(u**2 + v**2)))**(2*n))

(2) 定义同态滤波函数,频域 H(u,v)H(u,v)H(u,v) 中的同态滤波器如下所示:

H(u,v)=(γH−γL)(11+(D0D(u,v))2n)+γLH(u,v)=(\gamma_H-\gamma_L)(\frac 1 {1+(\frac {D_0} {D(u,v)})^{2n}})+\gamma_L H(u,v)=(γHγL)(1+(D(u,v)D0)2n1)+γL

为了避免对数域中错误操作,在输入中添加常数 1,以确保对数的输入始终 ≥1,最后,从输出中减去 1

def homomorphic_filter(im, D0, g_l=0, g_h=1, n=1):im_log = np.log(im.astype(np.float)+1)im_fft = dft2(im_log)H = (g_h - g_l) * butterworth(im.shape, D0, n) + g_l#H = np.fft.ifftshift(H)im_fft_filt = H*im_fft#im_fft_filt = np.fft.ifftshift(im_fft_filt)im_filt = idft2(im_fft_filt)im = np.exp(im_filt.real)-1im = np.uint8(255*im/im.max())return im

(3) 读取输入图像(带有不均匀照明),将其转换为灰度图像(确保像素值在 0-255 范围内),然后通过调函数 homomorphic_filter() 应用同态滤波器。

其中,Butterworth 滤波器 n=2 阶的截止频率为 30γL\gamma_LγLγH\gamma_HγH 参数分别设置为 0.31

image = rgb2gray(plt.imread('1.png'))
image_filtered = homomorphic_filter(image, D0=30, n=2, g_l=0.3, g_h=1)

(4) 使用 sobel 滤波器从原始图像中提取边缘,使用 OTSU 最佳阈值创建二值图像如下:

image_edges = sobel(image)
image_edges = image_edges <= threshold_otsu(image_edges)

(5) 使用 sobel 滤波器通过从同态滤波器转换的图像中提取边缘:

image_filtered_edges = sobel(image_filtered)
image_filtered_edges = image_filtered_edges <= threshold_otsu(image_filtered_edges)

(6) 最后,绘制输入图像和使用同态滤波器获得的输出图像,以及提取的边缘:

plt.figure(figsize=(21,17))
plt.gray()
plt.subplots_adjust(0,0,1,0.95,0.01,0.05)
plt.subplot(221), plt.imshow(image), plt.axis('off'), plt.title('original image', size=10)
plt.subplot(222), plt.imshow(image_filtered), plt.axis('off'), plt.title('filtered image', size=10)
plt.subplot(223), plt.imshow(image_edges), plt.axis('off'), plt.title('original image edges', size=10)
plt.subplot(224), plt.imshow(image_filtered_edges), plt.axis('off'), plt.title('filtered image edges', size=10)
plt.show()

输出结果如下所示:

同态滤波结果

从上图中可以看出,所获得的输出图像中的光照更加均匀,从而可以看清楚原始图像中黑暗区域的细节/边缘。

相关链接

Python图像处理【1】图像与视频处理基础
Python图像处理【2】探索Python图像处理库
Python图像处理【3】Python图像处理库应用
Python图像处理【4】图像线性变换
Python图像处理【5】图像扭曲/逆扭曲
Python图像处理【7】采样、卷积与离散傅里叶变换

http://www.fp688.cn/news/162857.html

相关文章:

  • 商丘电子商务网站建设免费网站推广方式
  • 甘肃省城乡建设局网站首页制作网站软件
  • 免费看各大网站的软件广东企业网站seo哪里好
  • 常州网站建设推广网络推广有效果吗
  • 做网站和自媒体哪个好厦门seo全网营销
  • 做设计网站模块的网站网站开发报价方案
  • 嵌入式工程师月薪多少搜索引擎优化英文简称为
  • 宝安专业做网站网络推广的概念
  • 企业网站怎么建设百度95099怎么转人工
  • 深圳营销型网站制作公司网页模板怎么用
  • 公司如何做网站百度浏览器官方下载
  • 网站建设电话客服话术江苏关键词推广seo
  • 商城网站里可以再放cms吗新手学seo
  • 兖州网站制作中国楼市最新消息
  • 网站商城定制网站建设网站建设的步骤
  • 深圳龙岗疫情防控日照网站优化公司
  • 东营建设信息网站怎么创建网址
  • 湖南网站建设小公司排名域名查询ip
  • 邪恶网站源码苏州优化排名seo
  • 文友胜做的网站谷歌搜索引擎网址
  • 各种类型网站建设售后完善百度认证考试
  • 电子商务网站建设可运用的技术游戏推广员好做吗
  • 网页设计感十足的网站天津百度快速排名优化
  • 设计工资一般多少南京seo排名
  • 不用关网站备案外贸推广平台哪个好
  • 网站的具体内容职业培训机构排名
  • 做外语网站的公司seo的基本内容
  • 柬埔寨网站开发洛阳网站建设优化
  • wordpress没有页面模板安卓优化大师清理
  • 免费建.com的网站seo招聘信息