当前位置: 首页 > news >正文

本地环境建设网站网络营销中的seo是指

本地环境建设网站,网络营销中的seo是指,做网站的那些个人工作室,国家卫生健康委员会官网官网入口作者 | Fengwen、BBuf 本文主要介绍在One-YOLOv5项目中计算mAP用到的一些numpy操作,这些numpy操作使用在utils/metrics.py中。本文是《YOLOv5全面解析教程④:目标检测模型精确度评估》的补充,希望能帮助到小伙伴们。 欢迎Star、试用One-YOLOv…

118e78f827cf830143393bc39de73fe4.jpeg

作者 | Fengwen、BBuf

本文主要介绍在One-YOLOv5项目中计算mAP用到的一些numpy操作,这些numpy操作使用在utils/metrics.py中。本文是《YOLOv5全面解析教程④:目标检测模型精确度评估》的补充,希望能帮助到小伙伴们。

欢迎Star、试用One-YOLOv5:

https://github.com/Oneflow-Inc/one-yolov5

用到的numpy操作比如:np.cumsum()、np.interp()、np.maximum.accumulate()、np.trapz()等。接下来将在下面逐一介绍。

import numpy as np

np.cumsum()

返回元素沿给定轴的累积和。

numpy.cumsum(a, axis=None, dtype=None, out=None)源码(https://github.com/numpy/numpy/blob/v1.23.0/numpy/core/fromnumeric.py#L2497-L2571)

  • 参数

  • a:数组

  • axis: 轴索引,整型,若a为n维数组,则axis的取值范围为[0,n-1]

  • dtype: 返回结果的数据类型,若不指定,则默认与a一致n

  • out: 数据类型为数组。用来放置结果的替代输出数组,它必须具有与输出结果具有相同的形状和数据缓冲区长度

  • 返回

  • 沿着指定轴的元素累加和所组成的数组,其形状应与输入数组a一致

更多信息请参阅读:

1.API_CN(https://www.osgeo.cn/numpy/reference/generated/numpy.cumsum.html?highlight=cumsum#numpy.cumsum)

2.API_EN(https://numpy.org/doc/stable/reference/generated/numpy.cumsum.html?highlight=cumsum#numpy.cumsum)

np.cumsum(a) # 计算累积和的轴。默认(无)是在展平的数组上计算cumsum。

array([ 1,  3,  6, 10, 15, 21])

a = np.array([[1,2,3], [4,5,6]])
np.cumsum(a, dtype=float)     # 指定输出的特定的类型

array([ 1.,  3.,  6., 10., 15., 21.])

np.cumsum(a,axis=0)      # 3列中每一列的行总和

array([[1, 2, 3],
      [5, 7, 9]])

x = np.ones((3,4),dtype=int) 
np.cumsum( x ,axis=0)

array([[1, 1, 1, 1],
      [2, 2, 2, 2],
      [3, 3, 3, 3]])

np.cumsum(a,axis=1)      # 2行中每行的列总和

array([[ 1,  3,  6],
      [ 4,  9, 15]])

np.interp()

  • 参数

  • x: 数组待插入数据的横坐标

  • xp: 一维浮点数序列原始数据点的横坐标,如果period参数没有指定那么就必须是递增的 否则,在使用xp = xp % period正则化之后,xp在内部进行排序

  • fp: 一维浮点数或复数序列 原始数据点的纵坐标,和xp序列等长.

  • left: 可选参数,类型为浮点数或复数(对应于fp值) 当x < xp[0]时的插值返回值,默认为fp[0].

  • right: 可选参数,类型为浮点数或复数(对应于fp值),当x > xp[-1]时的插值返回值,默认为fp[-1].

  • period: None或者浮点数,可选参数横坐标的周期 此参数使得可以正确插入angular x-coordinates. 如果该参数被设定,那么忽略left参数和right参数

  • 返回

  • 浮点数或复数(对应于fp值)或ndarray. 插入数据的纵坐标,和x形状相同

注意!

在没有设置period参数时,默认要求xp参数是递增序列

# 插入一个值
import numpy as np
import matplotlib.pyplot as plt
x = 2.5
xp = [1, 2, 3]
fp = [3, 2, 0]
y = np.interp(x, xp, fp)  # 1.0
plt.plot(xp, fp, '-o') 
plt.plot(x, y, 'x') # 画插值
plt.show()

696dae24eeaa1436ed7ceadb940df564.png

# 插入一个序列
import numpy as np
import matplotlib.pyplot as pltx = [0, 1, 1.5, 2.72, 3.14]
xp = [1, 2, 3]
fp = [3, 2, 0]
y = np.interp(x, xp, fp)  # array([ 3. ,  3. ,  2.5 ,  0.56,  0. ])
plt.plot(xp, fp, '-o')
plt.plot(x, y, 'x')
plt.show()

3d79a07e4d19040249e73211f5773294.png

np.maximum.accumulate

计算数组(或数组的特定轴)的累积最大值

import numpy as np
d = np.random.randint(low = 1, high = 10, size=(2,3))
print("d:\n",d)
c = np.maximum.accumulate(d, axis=1)
print("c:\n",c)

d: 

[[1 9 5]

[2 6 1]]

c: 

[[1 9 9] 

[2 6 6]]

np.trapz()

numpy.trapz(y, x=None, dx=1.0, axis=- 1) 使用复合梯形规则沿给定轴积分。

import matplotlib.pyplot as plt
import numpy as np
y = [1, 2, 3] ; x = [i+1 for i in range(len(y))]
print(np.trapz(x))
plt.fill_between(x, y)
plt.show() # (1 + 3)*(3 - 1)/2 = 4

4.0

0f3b3740c6a728437637e018cfa1fa3d.png

import matplotlib.pyplot as plt
import numpy as np
y = [1, 2, 3] 
x = [4, 6, 8]
print(np.trapz(y,x))
plt.fill_between(x, y)
plt.show() # (3 + 1)*(8 - 4) / 2 = 8

8.0

400b076421fc18800b9da91e33654461.png

参考资料:

1. numpy API文档 CN:https://www.osgeo.cn/numpy/dev/index.html

2. numpy API文档 EN:https://numpy.org/doc/stable/reference/index.html

3. axis的基本使用:https://www.jb51.net/article/242067.htm

其他人都在看

  • OneFlow v0.9.0正式发布

  • 从0到1,OpenAI的创立之路

  • 一块GPU搞定ChatGPT;ML系统入坑指南

  • YOLOv5解析教程:目标检测模型精确度评估

  • 比快更快,开源Stable Diffusion刷新作图速度

  • OneEmbedding:单卡训练TB级推荐模型不是梦

  • GLM训练加速:性能最高提升3倍,显存节省1/3

欢迎Star、试用OneFlow最新版本:GitHub - Oneflow-Inc/oneflow: OneFlow is a deep learning framework designed to be user-friendly, scalable and efficient.OneFlow is a deep learning framework designed to be user-friendly, scalable and efficient. - GitHub - Oneflow-Inc/oneflow: OneFlow is a deep learning framework designed to be user-friendly, scalable and efficient.https://github.com/Oneflow-Inc/oneflow/

http://www.fp688.cn/news/161926.html

相关文章:

  • 大陆怎么做香港网站津seo快速排名
  • 用什么软件做网站图片企业营销案例
  • 站长工具 忘忧草市场推广计划怎么写
  • 长春模板建站公司游戏推广怎么快速拉人
  • 深圳考试培训网站建设建站模板网站
  • 购物网站欢迎页面怎么设计公司做网站一般多少钱
  • 网页制作与网站建设实战大全 pdf下载百度手机助手免费下载
  • 木渎建设局网站百度seo提高排名费用
  • 网站热力图用ps怎么做刷神马网站优化排名
  • 平原网站建设价格怎么有自己的网站
  • 易进网站建设推广广东公共广告20120708
  • 北京网站建设 标准型 新翼长春百度推广公司
  • 福州企业网站维护cnzz数据统计
  • 静态网站 后台网络运营好学吗
  • hqz行情站网络营销渠道的特点
  • 专门做隐形眼镜的网站互联网营销师培训课程免费
  • 网站动态设计效果百度首页网址是多少
  • 哪个网站做恒指好今日新闻摘抄10条简短
  • 玉树网站建设2023年时政热点事件
  • wordpress百科点击宝seo
  • thinkcmf做网站快不快搜索引擎营销简称为
  • 用cms建设网站课程制作网页的基本步骤
  • 如何把自己做的网站竞价代运营外包公司
  • 表单大师 做网站网站软件下载大全
  • 广州专业的网站开发公司香港疫情最新消息
  • 网站网上预定功能怎么做推广优化方案
  • 门户网站类型搜索引擎有哪些技巧
  • 原型样网站灯塔seo
  • 企业vi设计全套欣赏seo营销方案
  • 四大门户网站对比分析合肥网站优化排名推广