当前位置: 首页 > news >正文

公司网站建设的相关建议百度手机管家

公司网站建设的相关建议,百度手机管家,传奇sf 新开网站,如何给网站做关键字1、当TopK问题出现在多个有序序列中时,就要用到归并排序的思想了 2、将优先队列初始化为添加多个有序序列的首元素的形式,再循环K次优先队列的出队和出队元素对应序列下个元素的入队,就能得到TopK的元素了 3、这些题目好像没有TopK 大用小顶堆…

1、当TopK问题出现在多个有序序列中时,就要用到归并排序的思想了
2、将优先队列初始化为添加多个有序序列的首元素的形式,再循环K次优先队列的出队和出队元素对应序列下个元素的入队,就能得到TopK的元素了
3、这些题目好像没有TopK 大用小顶堆,TopK 小用大顶堆反着来的经验了,得顺着来了:TopK 大用大顶堆,TopK 小用小顶堆

23. 合并 K 个升序链表

1、优先队列用于归并排序的经典题目:给定的有序序列为升序链表,要将所有升序链表合并成一个升序链表
2、该题直接用小顶堆实现归并排序,初始化时将所有头节点(每个有序序列的最小值)入堆,再依次弹出优先队列进行节点之间的连接;如果要直接将ListNode入堆,需要重写<,即__lt__()函数,使得节点之间能进行比较

from typing import Optional, List
import heapq
'''
23. 合并 K 个升序链表
给你一个链表数组,每个链表都已经按升序排列。
请你将所有链表合并到一个升序链表中,返回合并后的链表。
示例 1:输入:lists = [[1,4,5],[1,3,4],[2,6]]输出:[1,1,2,3,4,4,5,6]解释:链表数组如下:[1->4->5,1->3->4,2->6]将它们合并到一个有序链表中得到。1->1->2->3->4->4->5->6
思路1、将所有链表元素全部加入优先队列(小顶堆),再依次弹出优先队列重新建立节点赋值
思路2、将链表按照(头节点值,索引,头节点)形式加入优先队列(小顶堆),再依次弹出优先队列进行节点连接——不理解为什么去掉元组里的索引就会出错
思路3、自定义节点的比较方式,直接将节点加入优先队列(小顶堆),再依次弹出优先队列进行节点连接——这叫归并?
'''class ListNode:def __init__(self, val=0, next=None):self.val = valself.next = nextclass Solution:def mergeKLists(self, lists: List[Optional[ListNode]]) -> Optional[ListNode]:# # 思路1、将所有链表元素全部加入优先队列(小顶堆),再依次弹出优先队列重新建立节点赋值# # 情况1、数组为空# if len(lists) == None:#     return None# # 情况2、将数组中所有链表添加到小顶堆# que = []# for head in lists:#     if head != None:#         cur = head#         while cur != None:#             heapq.heappush(que, cur.val)#             cur = cur.next# # 继续将小顶堆的元素弹出构建为新的链表# dummyHead = ListNode(-1)# cur = dummyHead# while len(que) > 0:#     cur.next = ListNode(heapq.heappop(que))#     cur = cur.next# return dummyHead.next# # 思路2、将链表按照(头节点值,索引,头节点)形式加入优先队列(小顶堆),再依次弹出优先队列进行节点连接# # 情况1、数组为空# if len(lists) == None:#     return None# # 情况2、将链表按照(头节点值,索引,头节点)形式加入优先队列(小顶堆)# que = []# for i in range(len(lists)):#     if lists[i] != None:#         heapq.heappush(que, (lists[i].val, i, lists[i]))# # 将小顶堆的节点弹出进行连接# dummyHead = ListNode(-1)# cur = dummyHead# while len(que) > 0:#     _, i, head = heapq.heappop(que)#     if head.next != None:#         heapq.heappush(que, (head.next.val, i, head.next))#     cur.next = head#     cur = cur.next# return dummyHead.next# 思路3、自定义节点的比较方式,直接将节点加入优先队列(小顶堆),再依次弹出优先队列进行节点连接class Comparer:def __init__(self, node: Optional[ListNode]):self.node = nodedef __lt__(self, other):return self.node.val < other.node.val# 情况1、数组为空if len(lists) == None:return None# 情况2、将节点加入优先队列(小顶堆)que = []for head in lists:if head != None:heapq.heappush(que, Comparer(head))# 将小顶堆的节点弹出进行连接dummyHead = ListNode(-1)cur = dummyHeadwhile len(que) > 0:head = heapq.heappop(que).nodeif head.next != None:heapq.heappush(que, Comparer(head.next))cur.next = headcur = cur.nextreturn dummyHead.next

接下来的3道题目都是在leetcode分类刷题:二分查找(Binary Search)(四、基于值域的数组/矩阵类型)总结过的,当时就觉得值域二分法+双指针的思路也太复杂了,果然用归并排序的思想就要容易多了

378. 有序矩阵中第 K 小的元素

1、优先队列用于归并排序的经典题目:没有显式给定多个有序序列,需要将矩阵的每一行看作是一个个有序序列
2、该题目一开始我按照TopK 大用小顶堆,TopK 小用大顶堆反着来先用的大顶堆,并保持元素总数为K,提交后发现会超时!
3、直接用小顶堆实现归并排序,初始化时将所有矩阵第一列(每个有序序列的最小值)入堆,再循环K次小顶堆的出堆和出堆元素对应序列下个元素的入堆,循环结束就能得到第K小的元素了
4、这里题目的关键还是在于多个有序序列循环K次小顶堆的出堆总是能保证依次出队的是最小、次小等依此类推,循环K次小顶堆的入堆也总是能保证所有有序序列各自的最小值都在堆中(除非该有序序列被访问完毕)

from typing import List
import heapq
'''
378. 有序矩阵中第 K 小的元素
题目描述:给你一个n x n矩阵matrix ,其中每行和每列元素均按升序排序,找到矩阵中第 k 小的元素。
请注意,它是 排序后 的第 k 小元素,而不是第 k 个 不同 的元素。
你必须找到一个内存复杂度优于O(n2) 的解决方案。
示例 1:输入:matrix = [[1,5,9],[10,11,13],[12,13,15]], k = 8输出:13解释:矩阵中的元素为 [1,5,9,10,11,12,13,13,15],第 8 小元素是 13
题眼:Top K
思路1、优先队列(大顶堆):保持堆内元素总数为k,那么堆顶元素即为第k个最小元素
思路2、归并排序:采用优先队列(小顶堆),归并k次得到第k小的数,类似“23. 合并 K 个升序链表”
'''class Solution:def kthSmallest(self, matrix: List[List[int]], k: int) -> int:# # 思路1、优先队列(大顶堆):保持堆内元素总数为k,那么堆顶元素即为第k个最小元素# n = len(matrix)# que = []# for i in range(n):#     for j in range(n):#         heapq.heappush(que, -matrix[i][j])  # 添加相反数:因为python默认维护小顶堆#         if len(que) > k:#             heapq.heappop(que)# return -que[0]# 思路2、归并排序:采用优先队列(小顶堆),归并k次得到第k小的数,类似“23. 合并 K 个升序链表”n = len(matrix)que = []# 初始化优先队列(小顶堆)for i in range(n):heapq.heappush(que, (matrix[i][0], i, 0))  # 将每一行的最小值加入:堆顶元素为第一小的元素for _ in range(k - 1):_, i, j = heapq.heappop(que)if j + 1 <= n - 1:  # 每次归并都要加入出堆序列中的最小值,保证所有排序序列各自的最小值都在堆中,直到序列为空heapq.heappush(que, (matrix[i][j + 1], i, j + 1))return heapq.heappop(que)[0]if __name__ == '__main__':obj = Solution()while True:try:in_line = input().strip().split('=')matrix = []for row in in_line[1].strip()[1: -4].split(']')[:-1]:matrix.append([int(n) for n in row.split('[')[1].split(',')])k = int(in_line[2])# print(matrix, k)print(obj.kthSmallest(matrix, k))except EOFError:break

373. 查找和最小的 K 对数字

1、优先队列用于归并排序的经典题目:没有显式给定多个有序序列,可以模拟成“378. 有序矩阵中第 K 小的元素”的矩阵形式,将nums1当作矩阵的行,nums2当作矩阵的列,再把矩阵的每一行看作是一个个有序序列
2、该题目按照值域二分+双指针需要分别添加小于小于pairSum的数对和等于pairSum的数对,非常容易出错,换成归并排序的解法就没那么繁杂了
3、这道题我也一开始我按照TopK 大用小顶堆,TopK 小用大顶堆反着来先用的大顶堆,并保持元素总数为K,提交后发现也会超时!
4、直接用小顶堆实现归并排序,初始化时将所有nums1的元素+nums[0](每个有序序列的最小值)入堆,再循环K次小顶堆的出堆和出堆元素对应序列下个元素的入堆,循环结束就能得到第K小的元素了
5、这道题目还有个细节,可能K会大于所有数对的数量,即升序返回数对就可以了,是一种不用排序的情况
6、这里题目的关键还是在于多个有序序列循环K次小顶堆的出堆总是能保证依次出队的是最小、次小等依此类推,循环K次小顶堆的入堆也总是能保证所有有序序列各自的最小值都在堆中(除非该有序序列被访问完毕)

from typing import List
import heapq
'''
373. 查找和最小的 K 对数字
题目描述:给定两个以 升序排列 的整数数组 nums1 和 nums2,以及一个整数 k。
定义一对值(u,v),其中第一个元素来自nums1,第二个元素来自 nums2。
请找到和最小的 k个数对(u1,v1), (u2,v2) ... (uk,vk)。
示例 1:输入: nums1 = [1,7,11], nums2 = [2,4,6], k = 3输出: [1,2],[1,4],[1,6]解释: 返回序列中的前 3 对数:[1,2],[1,4],[1,6],[7,2],[7,4],[11,2],[7,6],[11,4],[11,6]
题眼:Top K
思路1、优先队列(大顶堆):保持元素总数为k个,最终k个元素为最小的k个:会超时
思路2、归并排序:利用上两个序列是递增数组的条件,模拟成“378. 有序矩阵中第 K 小的元素”的矩阵形式,将nums1当作矩阵的行,nums2当作矩阵的列,建立优先
队列(小顶堆),归并k次得到前最k小的数
'''class Solution:def kSmallestPairs(self, nums1: List[int], nums2: List[int], k: int) -> List[List[int]]:# # 思路1、优先队列(大顶堆):保持元素总数为k个,最终k个元素为最小的k个:会超时# que = []# for n1 in nums1:#     for n2 in nums2:#         heapq.heappush(que, (-(n1 + n2), n1, n2))  # 大顶堆:添加相反数,因为Python默认维护小顶堆#         if len(que) > k:#             heapq.heappop(que)# result = [[0] for _ in range(len(que))]# for i in range(len(result) - 1, -1, -1):#     _, n1, n2 = heapq.heappop(que)#     result[i] = [n1, n2]# return result# 思路2、归并排序:利用上两个序列是递增数组的条件,模拟成“378. 有序矩阵中第 K 小的元素”的矩阵形式,将nums1当作矩阵的行,nums2当作矩阵的列,# 建立优先队列(小顶堆),归并k次得到前最k小的数result = []# 情况1、所有数对都要被返回:也可以把k=min(k,len(nums1)*len(nums2))合并到情况2去写if len(nums1) * len(nums2) <= k:for n1 in nums1:for n2 in nums2:result.append([n1, n2])return result# 情况2、归并k次得到前最k小的数que = []# 初始化优先队列(小顶堆)for i in range(len(nums1)):heapq.heappush(que, (nums1[i] + nums2[0], i, 0))# 归并k次得到前最k小的数for _ in range(k):_, i, j = heapq.heappop(que)result.append([nums1[i], nums2[j]])if j + 1 <= len(nums2) - 1:heapq.heappush(que, (nums1[i] + nums2[j + 1], i, j + 1))return resultif __name__ == '__main__':obj = Solution()while True:try:in_line = input().strip().split('=')nums1 = [int(n) for n in in_line[1].strip().split('[')[1].split(']')[0].split(',')]nums2 = [int(n) for n in in_line[2].strip().split('[')[1].split(']')[0].split(',')]k = int(in_line[3])# print(nums1, nums2, k)print(obj.kSmallestPairs(nums1, nums2, k))except EOFError:break

719. 找出第 K 小的数对距离

1、优先队列用于归并排序的经典题目:没有显式给定多个有序序列,可以模拟成以索引0~len(nums)-2为距离起点的len(nums)-1个有序序列,每个序列的元素总数为len(nums)-1、len(nums)-2…1
2、这道题我也一开始我按照TopK 大用小顶堆,TopK 小用大顶堆反着来先用的大顶堆,并保持元素总数为K,提交后发现也会超时!
3、直接用小顶堆实现归并排序,初始化时将所有以索引0~len(nums)-2为距离起点的距离(每个有序序列的最小值)入堆,再循环K次小顶堆的出堆和出堆元素对应序列下个元素的入堆,循环结束就能得到第K小的元素了,最终提交后还是超时了,主要是这道题目有个比较长的测试用例,没办法,看来还是只能用值域二分+双指针了

import heapq
from typing import List
'''
719. 找出第 K 小的数对距离
题目描述:数对 (a,b) 由整数 a 和 b 组成,其数对距离定义为 a 和 b 的绝对差值。
给你一个整数数组 nums 和一个整数 k ,数对由 nums[i] 和 nums[j] 组成且满足 0 <= i < j < nums.length 。
返回 所有数对距离中 第 k 小的数对距离。
示例 1:输入:nums = [1,3,1], k = 1输出:0解释:数对和对应的距离如下:(1,3) -> 2(1,1) -> 0(3,1) -> 2距离第 1 小的数对是 (1,1) ,距离为 0 。
题眼:TopK
思路1、优先队列(大顶堆):保持堆内元素个数为K,则堆顶元素为第K小的:会超时
思路2、归并排序:优先队列(小顶堆),类似“373. 查找和最小的 K 对数字”,本题在排序后会存在len(nums)-1个升序序列,然后进行k次归并排序得到前最k小的数
'''class Solution:def smallestDistancePair(self, nums: List[int], k: int) -> int:# # 思路1、优先队列(大顶堆):保持堆内元素个数为K,则堆顶元素为第K小的:会超时# que = []# for i in range(len(nums)):#     for j in range(i + 1, len(nums)):#         heapq.heappush(que, -abs(nums[i] - nums[j]))  # 大顶堆:添加相反数,因为Python默认维护小顶堆#         if len(que) > k:#             heapq.heappop(que)# return -que[0]# 思路2、归并排序:优先队列(小顶堆),类似“373. 查找和最小的 K 对数字”,本题在排序后会存在len(nums)-1个升序序列,然后进行k次归并排序# 得到前最k小的数nums.sort()que = []for i in range(len(nums) - 1):  # 初始化 优先队列(小顶堆)heapq.heappush(que, (abs(nums[i] - nums[i + 1]), i, i + 1))result = 0# 归并k次得到前最k小的数for _ in range(k):result, i, j = heapq.heappop(que)if j + 1 <= len(nums) - 1:heapq.heappush(que, (abs(nums[i] - nums[j + 1]), i, j + 1))return resultif __name__ == "__main__":obj = Solution()while True:try:in_line = input().strip().split('=')nums = [int(n) for n in in_line[1].split('[')[1].split(']')[0].split(',')]k = int(in_line[2])print(obj.smallestDistancePair(nums, k))except EOFError:break
http://www.fp688.cn/news/161151.html

相关文章:

  • 怎么做网站呀黄页网
  • 方圆网站建设华联股份股票
  • 官网排名优化seo外包服务项目
  • 泉州专业建站公司广告网站留电话不用验证码
  • 谷歌推广怎么操作网站优化人员通常会将目标关键词放在网站首页中的
  • 高效办理的网站设计制作今日头条新闻发布
  • 如何让搜素引擎不收录自己的网站网站制作模板
  • 苏州工业园区做政务网站的公司推广app软件
  • 做电商网站价格表淘宝流量网站
  • 笑话网站模板广州网站优化推广
  • 有什么免费建站网站济南做seo排名
  • 做效果图常用的网站优秀营销软文范例100字
  • 网站维护的方式包括夫唯seo培训
  • 片头制作网站搜索引擎优化的方法和技巧
  • 怎么做那些盗号网站seo经典案例
  • 做购物网站建设的公司网络推广是以企业产品或服务
  • 沈阳做网站哪家公司好百度股市行情上证指数
  • 装酷网装修平台seo推广官网
  • 做淘宝客为什么要做网站农产品品牌推广方案
  • 网站邮箱设置如何快速提升自己
  • 优化网站有哪些方法黑龙江今日新闻
  • 手机做服务器搭网站seo公司哪家好
  • 12306网站建设花了多少钱百度热度
  • 建设工程合同交底的内容包括百度关键词优化培训
  • 点样做网站龙岗网站推广
  • 如何建立一个外贸网站宁波seo外包
  • 编写网站策划方案竞价推广什么意思
  • 福州建设发展集团网站活动推广朋友圈文案
  • 虫部落导航网站怎么做搜索引擎免费下载
  • 百度竞价推广开户多少钱网站排名优化系统