当前位置: 首页 > news >正文

偃师网站制作最彻底的手机优化软件

偃师网站制作,最彻底的手机优化软件,WordPress注册插件中文,wordpress 主题 her系列文章索引 LangChain教程 - 系列文章 LangChain提供了一种灵活且强大的表达式语言 (LangChain Expression Language, LCEL),用于创建复杂的逻辑链。通过将不同的可运行对象组合起来,LCEL可以实现顺序链、嵌套链、并行链、路由以及动态构建等高级功能…

系列文章索引
LangChain教程 - 系列文章

LangChain提供了一种灵活且强大的表达式语言 (LangChain Expression Language, LCEL),用于创建复杂的逻辑链。通过将不同的可运行对象组合起来,LCEL可以实现顺序链、嵌套链、并行链、路由以及动态构建等高级功能,从而满足各种场景下的需求。本文将详细介绍这些功能及其实现方式。

顺序链

LCEL的核心功能是将可运行对象按顺序组合起来,其中前一个对象的输出会自动传递给下一个对象作为输入。我们可以使用管道操作符 (|) 或显式的 .pipe() 方法来构建顺序链。

以下是一个简单的例子:

from langchain_ollama import OllamaLLM
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.output_parsers import StrOutputParsermodel = OllamaLLM(model="qwen2.5:0.5b")
prompt = ChatPromptTemplate.from_template("tell me a joke about {topic}")chain = prompt | model | StrOutputParser()result = chain.invoke({"topic": "bears"})
print(result)

输出:

Here's a bear joke for you:Why did the bear dissolve in water?
Because it was a polar bear!

在上述例子中,提示模板将输入格式化为聊天模型的输入格式,聊天模型生成笑话,最后通过输出解析器将结果转换为字符串。

嵌套链

嵌套链允许我们将多个链组合起来以创建更复杂的逻辑。例如,可以将一个生成笑话的链与另一个链组合,该链负责分析笑话的有趣程度。

analysis_prompt = ChatPromptTemplate.from_template("is this a funny joke? {joke}")
composed_chain = {"joke": chain} | analysis_prompt | model | StrOutputParser()result = composed_chain.invoke({"topic": "bears"})
print(result)

输出:

Haha, that's a clever play on words! Using "polar" to imply the bear dissolved or became polar/polarized when put in water. Not the most hilarious joke ever, but it has a cute, groan-worthy pun that makes it mildly amusing.

并行链

RunnableParallel 使得可以并行运行多个链,并将每个链的结果组合成一个字典。这种方式适用于需要同时处理多个任务的场景。

from langchain_core.runnables import RunnableParalleljoke_chain = ChatPromptTemplate.from_template("tell me a joke about {topic}") | model
poem_chain = ChatPromptTemplate.from_template("write a 2-line poem about {topic}") | modelparallel_chain = RunnableParallel(joke=joke_chain, poem=poem_chain)result = parallel_chain.invoke({"topic": "bear"})
print(result)

输出:

{'joke': "Why don't bears like fast food? Because they can't catch it!",'poem': "In the quiet of the forest, the bear roams free\nMajestic and wild, a sight to see."
}

路由

路由允许根据输入动态选择要执行的子链。LCEL提供了两种实现路由的方式:

使用自定义函数

通过 RunnableLambda 实现动态路由:

from langchain_core.prompts import PromptTemplate
from langchain_core.runnables import RunnableLambdachain = (PromptTemplate.from_template("""Given the user question below, classify it as either being about `LangChain`, `Anthropic`, or `Other`.Do not respond with more than one word.<question>
{question}
</question>Classification:""")| OllamaLLM(model="qwen2.5:0.5b")| StrOutputParser()
)langchain_chain = PromptTemplate.from_template("""You are an expert in langchain. \
Always answer questions starting with "As Harrison Chase told me". \
Respond to the following question:Question: {question}
Answer:"""
) | OllamaLLM(model="qwen2.5:0.5b")
anthropic_chain = PromptTemplate.from_template("""You are an expert in anthropic. \
Always answer questions starting with "As Dario Amodei told me". \
Respond to the following question:Question: {question}
Answer:"""
) | OllamaLLM(model="qwen2.5:0.5b")
general_chain = PromptTemplate.from_template("""Respond to the following question:Question: {question}
Answer:"""
) | OllamaLLM(model="qwen2.5:0.5b")def route(info):if "anthropic" in info["topic"].lower():return anthropic_chainelif "langchain" in info["topic"].lower():return langchain_chainelse:return general_chainfull_chain = {"topic": chain, "question": lambda x: x["question"]} | RunnableLambda(route)result = full_chain.invoke({"question": "how do I use LangChain?"})
print(result)def route(info):if "anthropic" in info["topic"].lower():return anthropic_chainelif "langchain" in info["topic"].lower():return langchain_chainelse:return general_chainfrom langchain_core.runnables import RunnableLambdafull_chain = {"topic": chain, "question": lambda x: x["question"]} | RunnableLambda(route)result = full_chain.invoke({"question": "how do I use LangChain?"})
print(result)

使用 RunnableBranch

RunnableBranch 通过条件匹配选择分支:

from langchain_core.runnables import RunnableBranchbranch = RunnableBranch((lambda x: "anthropic" in x["topic"].lower(), anthropic_chain),(lambda x: "langchain" in x["topic"].lower(), langchain_chain),general_chain,
)full_chain = {"topic": chain, "question": lambda x: x["question"]} | branch
result = full_chain.invoke({"question": "how do I use Anthropic?"})
print(result)

动态构建

动态构建链可以根据输入在运行时生成链的部分。通过 RunnableLambda 的返回值机制,可以返回一个新的 Runnable

from langchain_core.runnables import chain, RunnablePassthroughllm = OllamaLLM(model="qwen2.5:0.5b")contextualize_instructions = """Convert the latest user question into a standalone question given the chat history. Don't answer the question, return the question and nothing else (no descriptive text)."""
contextualize_prompt = ChatPromptTemplate.from_messages([("system", contextualize_instructions),("placeholder", "{chat_history}"),("human", "{question}"),]
)
contextualize_question = contextualize_prompt | llm | StrOutputParser()@chain
def contextualize_if_needed(input_: dict):if input_.get("chat_history"):return contextualize_questionelse:return RunnablePassthrough() | itemgetter("question")@chain
def fake_retriever(input_: dict):return "egypt's population in 2024 is about 111 million"qa_instructions = ("""Answer the user question given the following context:\n\n{context}."""
)
qa_prompt = ChatPromptTemplate.from_messages([("system", qa_instructions), ("human", "{question}")]
)full_chain = (RunnablePassthrough.assign(question=contextualize_if_needed).assign(context=fake_retriever)| qa_prompt| llm| StrOutputParser()
)result = full_chain.invoke({"question": "what about egypt","chat_history": [("human", "what's the population of indonesia"),("ai", "about 276 million"),],
})
print(result)

输出:

According to the context provided, Egypt's population in 2024 is estimated to be about 111 million.

完整代码实例

from operator import itemgetterfrom langchain_ollama import OllamaLLM
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.output_parsers import StrOutputParserprint("\n-----------------------------------\n")# Simple demo
model = OllamaLLM(model="qwen2.5:0.5b")
prompt = ChatPromptTemplate.from_template("tell me a joke about {topic}")chain = prompt | model | StrOutputParser()result = chain.invoke({"topic": "bears"})
print(result)print("\n-----------------------------------\n")# Compose demo
analysis_prompt = ChatPromptTemplate.from_template("is this a funny joke? {joke}")
composed_chain = {"joke": chain} | analysis_prompt | model | StrOutputParser()result = composed_chain.invoke({"topic": "bears"})
print(result)print("\n-----------------------------------\n")# Parallel demo
from langchain_core.runnables import RunnableParalleljoke_chain = ChatPromptTemplate.from_template("tell me a joke about {topic}") | model
poem_chain = ChatPromptTemplate.from_template("write a 2-line poem about {topic}") | modelparallel_chain = RunnableParallel(joke=joke_chain, poem=poem_chain)result = parallel_chain.invoke({"topic": "bear"})
print(result)print("\n-----------------------------------\n")# Route demo
from langchain_core.prompts import PromptTemplate
from langchain_core.runnables import RunnableLambdachain = (PromptTemplate.from_template("""Given the user question below, classify it as either being about `LangChain`, `Anthropic`, or `Other`.Do not respond with more than one word.<question>
{question}
</question>Classification:""")| OllamaLLM(model="qwen2.5:0.5b")| StrOutputParser()
)langchain_chain = PromptTemplate.from_template("""You are an expert in langchain. \
Always answer questions starting with "As Harrison Chase told me". \
Respond to the following question:Question: {question}
Answer:"""
) | OllamaLLM(model="qwen2.5:0.5b")
anthropic_chain = PromptTemplate.from_template("""You are an expert in anthropic. \
Always answer questions starting with "As Dario Amodei told me". \
Respond to the following question:Question: {question}
Answer:"""
) | OllamaLLM(model="qwen2.5:0.5b")
general_chain = PromptTemplate.from_template("""Respond to the following question:Question: {question}
Answer:"""
) | OllamaLLM(model="qwen2.5:0.5b")def route(info):if "anthropic" in info["topic"].lower():return anthropic_chainelif "langchain" in info["topic"].lower():return langchain_chainelse:return general_chainfull_chain = {"topic": chain, "question": lambda x: x["question"]} | RunnableLambda(route)result = full_chain.invoke({"question": "how do I use LangChain?"})
print(result)print("\n-----------------------------------\n")# Branch demo
from langchain_core.runnables import RunnableBranchbranch = RunnableBranch((lambda x: "anthropic" in x["topic"].lower(), anthropic_chain),(lambda x: "langchain" in x["topic"].lower(), langchain_chain),general_chain,
)full_chain = {"topic": chain, "question": lambda x: x["question"]} | branch
result = full_chain.invoke({"question": "how do I use Anthropic?"})
print(result)print("\n-----------------------------------\n")# Dynamic demo
from langchain_core.runnables import chain, RunnablePassthroughllm = OllamaLLM(model="qwen2.5:0.5b")contextualize_instructions = """Convert the latest user question into a standalone question given the chat history. Don't answer the question, return the question and nothing else (no descriptive text)."""
contextualize_prompt = ChatPromptTemplate.from_messages([("system", contextualize_instructions),("placeholder", "{chat_history}"),("human", "{question}"),]
)
contextualize_question = contextualize_prompt | llm | StrOutputParser()@chain
def contextualize_if_needed(input_: dict):if input_.get("chat_history"):return contextualize_questionelse:return RunnablePassthrough() | itemgetter("question")@chain
def fake_retriever(input_: dict):return "egypt's population in 2024 is about 111 million"qa_instructions = ("""Answer the user question given the following context:\n\n{context}."""
)
qa_prompt = ChatPromptTemplate.from_messages([("system", qa_instructions), ("human", "{question}")]
)full_chain = (RunnablePassthrough.assign(question=contextualize_if_needed).assign(context=fake_retriever)| qa_prompt| llm| StrOutputParser()
)result = full_chain.invoke({"question": "what about egypt","chat_history": [("human", "what's the population of indonesia"),("ai", "about 276 million"),],
})
print(result)print("\n-----------------------------------\n")

J-LangChain实现上面实例

J-LangChain - 智能链构建

总结

LangChain的LCEL通过提供顺序链、嵌套链、并行链、路由和动态构建等功能,为开发者构建复杂的语言任务提供了强大的工具。无论是简单的逻辑流还是复杂的动态决策,LCEL都能高效地满足需求。通过合理使用这些功能,开发者可以快速搭建高效、灵活的智能链,为各种场景的应用提供支持。

http://www.fp688.cn/news/160937.html

相关文章:

  • 网站品牌建设功能爱站长工具
  • 受欢迎的广州网站设计seo搜索引擎优化工程师招聘
  • 网站建设图片像素是多大的百度友情链接
  • 亚马逊插件WordPress网络推广的优化服务
  • 有哪些可以做1元夺宝的网站100个关键词
  • 网站开发接口深圳市前十的互联网推广公司
  • 分类网站怎么做项目河北seo诊断培训
  • 官方网站投诉平台独立站seo是什么
  • asp动态网站被攻击网站快速刷排名工具
  • 网站建设策划书ppt网站建设黄页视频
  • 如何做招聘网站的方案google国际版入口
  • 服装网站建设发展状况学历提升哪个教育机构好一些
  • 培训学校网站建设方案重庆森林电影简介
  • 高端网站建设青岛世界十大网站排名
  • 简单网站开发项目实例市场推广seo职位描述
  • 建站费用参考电话营销系统
  • 网站研发进度表下载帮别人推广app赚钱
  • 网站快速排名怎么做百度知道官网首页登录入口
  • 有几个网站打不开最简短的培训心得
  • 网站建设主动型电话销售话术整站优化方案
  • 新中建设公司招聘网站提交百度一下
  • 春播网站是谁做的google play
  • 陕西专业网站开发公司网络营销和电子商务区别
  • 访问数据库的网站开发语言站长工具忘忧草
  • 合肥做网站的公司深圳最好seo
  • wordpress上传视频大小seo学堂
  • 中国建设银行网站打不开东莞网络推广营销公司
  • wordpress导航栏修改太原seo
  • 地下城钓鱼网站如何做宣传推广图片
  • 米拓建站官网怎么用不了今日关注