怎样找回网站域名密码缅甸今日新闻
这几年,伴随着ChatGPT开始的AI浪潮席卷全球,从聊天场景逐步向多场景扩散,形成了广泛开花的现象。至今,虽然在部分场景的进展已经略显疲态,但当前的这种趋势仍然还在不断的扩展。不少公司,甚至有不少大型电商公司都将AI作为未来的重要方向。本文以电商中的部分AI应用做一定总结。
其实,在电商中应用AI技术,已经具有非常久远的历史了,那么之前的应用和现在的有哪些区别呢?
ChatGPT之前
原先的应用,是以人工智能技术(AI技术),包括线性回归、NPL、决策树、深度学习等众多技术来在各个场景进行尝试性探索。举几个具体的例子:
预测
预测是AI技术应用的典型场合,它是通过对历史和当前的各类数据进行分析,结合各种信息对未来进行预测的一种方法。在具体应用上,又可以分为多个粒度、多个场景。以电商平台大促的销量预测举例:
- 逻辑预测视角,高层要对平台总成交(GMV)做预测,各个事业部要进行拆解(各个行业、品类等),对应到具体品牌商、运营人员,则要进一步在各自的范围内进行预测,最终还要拆分到商品一级,才能进行大促的生产备料备货。这是从粗到细的虚拟结构逐层预测的,而且多层之间还要报纸内在的一致性。
- 物理预测视角,大促除了销量高,另一个至关重要的因素就是物流运力。与线上成交额不同,上亿、上十亿的物流包裹是需要线下的仓库存储的、每一单都需要物流快递人员真实操作的。因此还需要从仓储能力、运输能力、配送能力等进行预估,而这时可能就需要从物理层次上进行预测,华东、华南等地如何,还要具体到仓库布局、到省到市到仓等。
- 预测技术,在预测技术中,既可能采用移动平均、指数平滑等技术,也会采用诸如决策树、随机森林、深度学习等AI技术进行预测。
- 数据处理技术,这一部分在数据处理中是至关重要的一环,没有良好的数据基础,是跑不出泛化能力强的模型的。
推荐
推荐是电商平台最典型的应用,相比于线下零售,电商平台掌握了更多数据,能够更好的挖掘人们的偏好,从而比消费者还懂消费者的给出最匹配推荐。AI技术中的数据挖掘、自然语言处理(NLP)就是推荐场景下的最好武器。当然,现在推荐已经广泛地使用在新闻、视频等各种咨询平台上了。
机器人客服
说到电商,就不能不说服务。电商平台以物美价廉服务好来打造口碑。针对服务,电商平台也推出并标准化了不少模式,比如7天无理由、仅退款、送货上门、送装一体等。另外,电商平台的交流是隔着网线的,往往没有线下交流方便,沟通成本会高很多,因此,很多电商平台和第三方公司,会努力研发机器人客服,力图降低低价值、重复性的远程沟通。
在ChatGPT之前,聊天机器人主要还是使用专家系统的方式来进行,需要努力的将自身或者行业的知识库进行整理,设置关键字,通过用户提问的关键字匹配出设置好的答案。效果是有,但是感觉不是特别智能,有一种呆呆的感觉。
ChatGPT之后
ChatGPT出现之后,极高的聊天准确率给了人们非常大的震撼,也引起了巨大的行业动作,人们从惊叹、质疑慢慢了到了理解和接受,在这近两年的时间里,感触最深的是如下几点:
- 思维的变化:从AI是被动工具慢慢转向AI的主动创造。通过大量的、不断优化的提示词,AI可以进行与人类类似的思维、编码、写作和艺术创作了。
- AI工具的进化:从单独的、特定场景的AI慢慢进化到完成整件事了。通过多Agent、工作流等方式,AI除了解决特定技术,已经可以处理流程了。
- AI的未来仍然待定义:当前的很多AI仍然在重复已有的事情,仍然是在用新工具重做现有的事情,AI如何定义AI的事情,还需要继续探讨。
在ChatGPT之后,上述的几种场景也发生了一些变化。
预测
预测技术流里,很大一派就是深度学习流派,这一排更加发扬光大了。
推荐
推荐主要基于历史和关系,找出新的兴趣点。因此,在对上下文、关联关系理解的更准确之后,推荐的效果也体现了一些变化。但感性上看,没有机器人客服的感受明显。
机器人客服
这个是表现最明显的,毕竟掀起这次浪潮开端的ChatGPT就是以聊天的方式进入人们视野的。
在这里,主要体现在以下几个点的变化:
- 对问题的匹配率变得更高了,理解的更准了。
- 支持多轮对话,可以理解上下文。
- 回答更加人性化了,机器人除了像机器,也有点像人了。