当前位置: 首页 > news >正文

公司网站设计网络公司厦门网站建设公司哪家好

公司网站设计网络公司,厦门网站建设公司哪家好,昆明招聘网站建设普工小工,温州seo关键词文章目录 含有 x − a x a \sqrt{\pm \frac{x-a}{xa}} xax−a​ ​ 或者 ( x − a ) ( b − x ) \sqrt{(x-a)(b-x)} (x−a)(b−x) ​ 的积分含有三角函数函数的积分含有反三角函数的积分 (其中 a > 0 a>0 a>0)含有指数函数的积分含有对数函数的积分含有双曲函数的…

文章目录

含有 ± x − a x + a \sqrt{\pm \frac{x-a}{x+a}} ±x+axa 或者 ( x − a ) ( b − x ) \sqrt{(x-a)(b-x)} (xa)(bx) 的积分

79. ∫ ⁣ ⁣ x − a x − b d x = ( x − b ) x − a x − b + ( b − a ) ln ⁡ ( ∣ x − a ∣ + ∣ x − b ∣ ) + C \begin{equation} 79.\,\int\!\! \sqrt{\frac{x-a}{x-b}}dx=(x-b)\sqrt{\frac{x-a}{x-b}}+(b-a)\ln(\sqrt{\vert x-a\vert} + \sqrt{\vert x-b \vert }\,) +C \end{equation} 79.xbxa dx=(xb)xbxa +(ba)ln(xa +xb )+C

80. ∫ ⁣ ⁣ x − a x − b d x = ( x − b ) x − a x − b + ( b − a ) arcsin ⁡ x − a b − a + C \begin{equation} 80.\,\int\!\! \sqrt{\frac{x-a}{x-b}}\,dx=(x-b)\sqrt{\frac{x-a}{x-b}}+(b-a)\arcsin\sqrt{\frac{x-a}{b-a}}+C \end{equation} 80.xbxa dx=(xb)xbxa +(ba)arcsinbaxa +C

81. ∫ ⁣ ⁣ d x ( x − a ) ( x − b ) = 2 arcsin ⁡ x − a b − a + C ( a < b ) \begin{equation} 81.\,\int\!\! \frac{dx}{\sqrt{(x-a)(x-b)}}=2\arcsin\sqrt{\frac{x-a}{b-a}}+C \quad (a<b) \end{equation} 81.(xa)(xb) dx=2arcsinbaxa +C(a<b)

82. ∫ ⁣ ⁣ ( x − a ) ( b − x ) d x = 2 x − a − b 4 ( x − a ) ( b − x ) + ( b − a ) 2 4 arcsin ⁡ x − a b − a + C ( a < b ) \begin{equation} 82.\,\int\!\! \sqrt{(x-a)(b-x)}\,dx=\frac{2x-a-b}{4}\sqrt{(x-a)(b-x)} +\frac{(b-a)^2}{4}\arcsin\sqrt{\frac{x-a}{b-a}}+C \quad (a<b) \end{equation} 82.(xa)(bx) dx=42xab(xa)(bx) +4(ba)2arcsinbaxa +C(a<b)

含有三角函数函数的积分

83. ∫ ⁣ ⁣ sin ⁡ x d x = − cos ⁡ x + C \begin{equation} 83.\,\int\!\! \sin x dx = -\cos x +C \end{equation} 83.sinxdx=cosx+C

84. ∫ ⁣ ⁣ cos ⁡ x d x = sin ⁡ x + C \begin{equation} 84.\,\int\!\! \cos x dx= \sin x +C \end{equation} 84.cosxdx=sinx+C

85. ∫ ⁣ ⁣ tan ⁡ x d x − ln ⁡ ∣ cos ⁡ x ∣ + C \begin{equation} 85.\,\int\!\! \tan x dx -\ln \vert \cos x \vert +C \end{equation} 85.tanxdxlncosx+C

86. ∫ ⁣ ⁣ c t g x d x = ln ⁡ ∣ sin ⁡ x ∣ + C \begin{equation} 86.\,\int\!\! ctgx dx =\ln \vert \sin x \vert +C \end{equation} 86.ctgxdx=lnsinx+C

87. ∫ ⁣ ⁣ sec ⁡ x d x = ln ⁡ ∣ tan ⁡ ( π 4 + x 2 ) ∣ + C = ln ⁡ ∣ sec ⁡ x + tan ⁡ x ∣ + C \begin{equation} 87.\,\int\!\! \sec x dx = \ln \vert \tan (\frac{ \pi}{4} + \frac{x}{2}) \vert + C = \ln \vert \sec x + \tan x \vert +C \end{equation} 87.secxdx=lntan(4π+2x)+C=lnsecx+tanx+C

88. ∫ ⁣ ⁣ csc ⁡ x d x = ln ⁡ ∣ tan ⁡ x 2 ∣ + C = ln ⁡ ∣ csc ⁡ x − c t g x ∣ + C \begin{equation} 88.\,\int\!\! \csc x dx= \ln \vert \tan \frac{x}{2} \vert +C = \ln \vert \csc x - ctg x \vert +C \end{equation} 88.cscxdx=lntan2x+C=lncscxctgx+C

89. ∫ ⁣ ⁣ sec ⁡ 2 x d x = tan ⁡ x + C \begin{equation} 89.\,\int\!\! \sec^2 x dx = \tan x +C \end{equation} 89.sec2xdx=tanx+C

90. ∫ ⁣ ⁣ csc ⁡ 2 x d x = − c t g x + C \begin{equation} 90.\,\int\!\! \csc ^2 x dx = - ctgx +C \end{equation} 90.csc2xdx=ctgx+C

91. ∫ ⁣ ⁣ sec ⁡ x tan ⁡ x d x = sec ⁡ x + C \begin{equation} 91.\,\int\!\! \sec x \tan x dx = \sec x +C \end{equation} 91.secxtanxdx=secx+C

92. ∫ ⁣ ⁣ csc ⁡ x d x c t g x d x = − csc ⁡ x + C \begin{equation} 92.\,\int\!\! \csc x dx ctgx dx = -\csc x +C \end{equation} 92.cscxdxctgxdx=cscx+C

93. ∫ ⁣ ⁣ sin ⁡ 2 x d x = x 2 − 1 4 sin ⁡ 2 x + C \begin{equation} 93.\,\int\!\! \sin ^2 x dx = \frac{x}{2}- \frac{1}{4}\sin 2x +C \end{equation} 93.sin2xdx=2x41sin2x+C

94. ∫ ⁣ ⁣ cos ⁡ 2 x d x = x 2 + 1 4 sin ⁡ 2 x + C \begin{equation} 94.\,\int\!\! \cos ^2 x dx = \frac{x}{2} + \frac{1}{4}\sin 2x +C \end{equation} 94.cos2xdx=2x+41sin2x+C

95. ∫ ⁣ ⁣ sin ⁡ n x d x = − 1 n sin ⁡ n − 1 x cos ⁡ x + n − 1 n ∫ ⁣ ⁣ sin ⁡ n − 2 d x \begin{equation} 95.\,\int\!\! \sin ^n x dx = - \frac{1}{n}\sin ^{n-1}x \cos x + \frac{n-1}{n} \int\!\! \sin ^{n-2}dx \end{equation} 95.sinnxdx=n1sinn1xcosx+nn1sinn2dx

96. ∫ ⁣ ⁣ cos ⁡ n x d x = 1 n cos ⁡ n − 1 x sin ⁡ x + n − 1 n ∫ ⁣ ⁣ cos ⁡ n − 2 x d x \begin{equation} 96.\,\int\!\! \cos ^ n x dx = \frac{1}{n}\cos^{ n-1}x \sin x + \frac{n-1}{n} \int\!\! \cos^{n-2} x dx \end{equation} 96.cosnxdx=n1cosn1xsinx+nn1cosn2xdx

97. ∫ ⁣ ⁣ d x sin ⁡ n x = − 1 n − 1 . cos ⁡ x sin ⁡ n − 1 x + n − 2 n − 1 ∫ ⁣ ⁣ d x sin ⁡ n − 2 x \begin{equation} 97.\,\int\!\! \frac{dx}{\sin ^ n x} = - \frac{1}{n-1} . \frac{\cos x}{\sin ^{n-1}x}+\frac{n-2}{n-1} \int\!\! \frac{dx}{\sin^{n-2}x} \end{equation} 97.sinnxdx=n11.sinn1xcosx+n1n2sinn2xdx

98. ∫ ⁣ ⁣ d x cos ⁡ n x = 1 n − 1 . sin ⁡ x cos ⁡ n − 1 x + n − 2 n − 1 ∫ ⁣ ⁣ d x cos ⁡ x n − 2 x \begin{equation} 98.\,\int\!\! \frac{dx}{\cos ^n x}= \frac{1}{n-1}.\frac{\sin x}{\cos ^{n-1}x}+\frac{n-2}{n-1}\int\!\! \frac{dx}{\cos x^{n-2}x} \end{equation} 98.cosnxdx=n11.cosn1xsinx+n1n2cosxn2xdx

99. ∫ ⁣ ⁣ cos ⁡ m sin ⁡ n x d x = 1 m + n cos ⁡ m − 1 x sin ⁡ n + 1 x + m − 1 m + n ∫ ⁣ ⁣ cos ⁡ m − 2 x sin ⁡ n x d x \begin{equation} 99.\,\int\!\! \cos ^ m \sin ^n x dx =\frac{1}{m+n}\cos^{m-1}x \sin ^{n+1}x + \frac{m-1}{m+n} \int\!\! \cos ^ {m-2} x \sin ^n x dx \end{equation} 99.cosmsinnxdx=m+n1cosm1xsinn+1x+m+nm1cosm2xsinnxdx

= − 1 m + 1 cos ⁡ m + 1 x sin ⁡ n − 1 x + n − 1 m + n ∫ ⁣ ⁣ cos ⁡ m x sin ⁡ n − 2 x d x \begin{equation} \qquad = -\frac{1}{m+1}\cos ^{m+1}x \sin ^{n-1}x + \frac{n-1}{m+n} \int\!\! \cos ^m x \sin ^{n-2} x dx \notag \end{equation} =m+11cosm+1xsinn1x+m+nn1cosmxsinn2xdx

100. ∫ ⁣ ⁣ sin ⁡ a x cos ⁡ b x d x = − 1 2 ( a + b ) cos ⁡ ( a + b ) x − 1 2 ( a − b ) cos ⁡ ( a − b ) x + C \begin{equation} 100.\,\int\!\! \sin ax \cos bx dx = - \frac{1}{2(a+b)}\cos (a+b)x - \frac{1}{2(a-b)} \cos (a-b)x +C \end{equation} 100.sinaxcosbxdx=2(a+b)1cos(a+b)x2(ab)1cos(ab)x+C

101. ∫ ⁣ ⁣ sin ⁡ a x sin ⁡ b x d x = − 1 2 ( a + b ) sin ⁡ ( a + b ) x 1 2 ( a − b ) sin ⁡ ( a − b ) x + C \begin{equation} 101.\,\int\!\! \sin ax \sin bx dx = - \frac{1}{2(a+b)} \sin (a+b) x\frac{1}{2(a-b)} \sin (a-b)x +C \end{equation} 101.sinaxsinbxdx=2(a+b)1sin(a+b)x2(ab)1sin(ab)x+C

102. ∫ ⁣ ⁣ cos ⁡ a x cos ⁡ b x d x = 1 2 ( a + b ) sin ⁡ ( a + b ) x + 1 2 ( a − b ) sin ⁡ ( a − b ) x + C \begin{equation} 102.\,\int\!\! \cos ax \cos bx dx =\frac{1}{2(a+b)} \sin (a+b)x + \frac{1}{2(a-b)} \sin (a-b)x +C \end{equation} 102.cosaxcosbxdx=2(a+b)1sin(a+b)x+2(ab)1sin(ab)x+C

103. ∫ ⁣ ⁣ d x a + b sin ⁡ x = 2 a 2 − b 2 arctan ⁡ arctan ⁡ x 2 + b a 2 − b 2 + C ( a 2 > b 2 ) \begin{equation} 103.\,\int\!\! \frac{dx}{a+b\sin x} = \frac{2}{\sqrt{a^2-b^2}}\arctan \frac{\arctan \frac{x}{2}+b}{\sqrt{a^2-b^2}} +C \qquad ( a^2 > b^2 ) \end{equation} 103.a+bsinxdx=a2b2 2arctana2b2 arctan2x+b+C(a2>b2)

104. ∫ ⁣ ⁣ d x a + b sin ⁡ x = 1 b 2 − a 2 ln ⁡ ∣ arctan ⁡ x 2 + b − b 2 − a 2 arctan ⁡ x 2 + b + b 2 − a 2 ∣ + C ( a 2 < b 2 ) \begin{equation} 104.\,\int\!\! \frac{dx}{a+b \sin x} = \frac{1}{\sqrt{b^2-a^2}} \ln \Bigg \vert \frac{\arctan \frac{x}{2}+b - \sqrt{b^2-a^2}}{ \arctan \frac {x}{2}+b+ \sqrt {b^2-a^2}} \Bigg \vert +C \qquad (a^2<b^2) \end{equation} 104.a+bsinxdx=b2a2 1ln arctan2x+b+b2a2 arctan2x+bb2a2 +C(a2<b2)

105. ∫ ⁣ ⁣ d x a + b cos ⁡ x = 2 a + b a + b a − b arctan ⁡ ( a − b a + b tan ⁡ x 2 ) + C ( a 2 > b 2 ) \begin{equation} 105.\,\int\!\! \frac{dx}{a+b \cos x} = \frac{2}{a+b} \sqrt{ \frac{a+b}{a-b}} \arctan \Bigg ( \sqrt { \frac{a-b}{a+b}} \tan \frac{x}{2} \Bigg ) +C \qquad (a^2>b^2) \end{equation} 105.a+bcosxdx=a+b2aba+b arctan(a+bab tan2x)+C(a2>b2)

106. ∫ ⁣ ⁣ d x a + b cos ⁡ x = 1 a + b a + b b − a ln ⁡ ∣ tan ⁡ x 2 + a + b b − a tan ⁡ x 2 − a + b b − a ∣ + C ( a 2 < b 2 ) \begin{equation} 106.\,\int\!\! \frac{dx}{a+b \cos x}= \frac{1}{a+b}\sqrt{ \frac{a+b}{b-a}} \ln \Bigg \vert \frac{\tan \frac{x}{2}+ \sqrt {\frac{a+b}{b-a}}}{\tan \frac{x}{2}- \sqrt{\frac{a+b}{b-a}}} \Bigg \vert +C \qquad (a^2<b^2) \end{equation} 106.a+bcosxdx=a+b1baa+b ln tan2xbaa+b tan2x+baa+b +C(a2<b2)

107. ∫ ⁣ ⁣ d x a 2 cos ⁡ 2 x + b 2 sin ⁡ 2 x = 1 a b arctan ⁡ ( b a tan ⁡ x ) + C \begin{equation} 107.\,\int\!\! \frac{dx}{a^2\cos ^2x + b^2 \sin ^2 x}= \frac{1}{ab} \arctan (\frac{b}{a}\tan x ) +C \end{equation} 107.a2cos2x+b2sin2xdx=ab1arctan(abtanx)+C

108. ∫ ⁣ ⁣ d x a 2 cos ⁡ 2 x − b 2 sin ⁡ 2 x = 1 2 a b ln ⁡ ∣ b tan ⁡ x + a b tan ⁡ x − a ∣ + C \begin{equation} 108.\,\int\!\! \frac{dx}{a^2 \cos ^2x -b^2 \sin ^2 x} = \frac{1}{2ab} \ln \Big \vert \frac{b \tan x +a }{b \tan x -a} \Big \vert +C \end{equation} 108.a2cos2xb2sin2xdx=2ab1ln btanxabtanx+a +C

109. ∫ ⁣ ⁣ x sin ⁡ a x d x = 1 a 2 sin ⁡ a x − 1 a x cos ⁡ a x + C \begin{equation} 109.\,\int\!\! x \sin ax dx = \frac{1}{a^2} \sin ax - \frac{1}{a} x \cos ax +C \end{equation} 109.xsinaxdx=a21sinaxa1xcosax+C

110. ∫ ⁣ ⁣ x 2 sin ⁡ a x d x = − 1 a x 2 cos ⁡ a x + 2 a 2 x sin ⁡ a x + 2 a 3 cos ⁡ a x + C \begin{equation} 110.\,\int\!\! x^2 \sin ax dx = -\frac{1}{a}x^2 \cos ax + \frac{2}{a^2}x\sin ax + \frac{2}{a^3}\cos ax +C \end{equation} 110.x2sinaxdx=a1x2cosax+a22xsinax+a32cosax+C

111. ∫ ⁣ ⁣ x cos ⁡ a x d x = 1 a 2 cos ⁡ a x + 1 a x sin ⁡ a x + C \begin{equation} 111.\,\int\!\! x \cos ax dx = \frac{1}{a^2} \cos ax + \frac{1}{a}x \sin ax +C \end{equation} 111.xcosaxdx=a21cosax+a1xsinax+C

112. ∫ ⁣ ⁣ x 2 cos ⁡ a x d x = 1 a x 2 sin ⁡ a x + 2 a 2 x cos ⁡ a x − 2 a 3 sin ⁡ a x + C \begin{equation} 112.\,\int\!\! x^2 \cos ax dx = \frac{1}{a} x^2 \sin ax + \frac{2}{a^2}x \cos ax - \frac{2}{a^3}\sin ax +C \end{equation} 112.x2cosaxdx=a1x2sinax+a22xcosaxa32sinax+C

含有反三角函数的积分 (其中 a > 0 a>0 a>0)

113. ∫ ⁣ ⁣ arcsin ⁡ x a d x = x arcsin ⁡ x a + a 2 − x 2 + C \begin{equation} 113.\,\int\!\! \arcsin \frac{x}{a} dx = x \arcsin \frac{x}{a}+ \sqrt{a^2-x^2} +C \end{equation} 113.arcsinaxdx=xarcsinax+a2x2 +C

114. ∫ ⁣ ⁣ x arcsin ⁡ x a d x = ( x 2 2 − a 2 4 ) arcsin ⁡ x a + x 4 a 2 − x 2 + C \begin{equation} 114.\,\int\!\! x\arcsin \frac{x}{a} dx = \Big ( \frac{x^2}{2}-\frac{a^2}{4}\Big )\arcsin \frac{x}{a} + \frac{x}{4}\sqrt {a^2-x^2} +C \end{equation} 114.xarcsinaxdx=(2x24a2)arcsinax+4xa2x2 +C

115. ∫ ⁣ ⁣ x 2 arcsin ⁡ x a d x = x 3 3 arcsin ⁡ x a + 1 9 ( x 2 + 2 a 2 ) a 2 − x 2 + C \begin{equation} 115.\,\int\!\! x^2 \arcsin \frac{x}{a}dx= \frac{x^3}{3} \arcsin \frac{x}{a} + \frac{1}{9}(x^2+2a^2)\sqrt{a^2-x^2}+C \end{equation} 115.x2arcsinaxdx=3x3arcsinax+91(x2+2a2)a2x2 +C

116. ∫ ⁣ ⁣ arccos ⁡ x a d x = x arccos ⁡ x a − a 2 − x 2 + C \begin{equation} 116.\,\int\!\! \arccos \frac{x}{a}dx= x \arccos \frac{x}{a}-\sqrt {a^2-x^2} +C \end{equation} 116.arccosaxdx=xarccosaxa2x2 +C

117. ∫ ⁣ ⁣ x arccos ⁡ x a d x = ( x 2 2 − a 2 4 ) arccos ⁡ x 4 − x 4 a 2 − x 2 + C \begin{equation} 117.\,\int\!\! x \arccos \frac{x}{a} dx = \Big ( \frac{x^2}{2}-\frac{a^2}{4}\Big) \arccos \frac{x}{4} - \frac{x}{4}\sqrt {a^2 -x^2} +C \end{equation} 117.xarccosaxdx=(2x24a2)arccos4x4xa2x2 +C

118. ∫ ⁣ ⁣ x 2 arccos ⁡ x a d x = x 3 a arccos ⁡ x a − 1 9 ( x 2 + 2 a 2 ) a 2 − x 2 + C \begin{equation} 118.\,\int\!\! x^2\arccos \frac{x}{a} dx = \frac{x^3}{a} \arccos \frac{x}{a} - \frac{1}{9}(x^2 +2a^2)\sqrt{a^2-x^2}+C \end{equation} 118.x2arccosaxdx=ax3arccosax91(x2+2a2)a2x2 +C

119. ∫ ⁣ ⁣ arctan ⁡ x a d x = x arctan ⁡ x a − a 2 ln ⁡ ( a 2 + x 2 ) + C \begin{equation} 119.\,\int\!\! \arctan \frac{x}{a} dx =x \arctan \frac{x}{a} - \frac{a}{2}\ln(a^2+x^2)+C \end{equation} 119.arctanaxdx=xarctanax2aln(a2+x2)+C

120. ∫ ⁣ ⁣ x arctan ⁡ x a d x = 1 2 ( a 2 + x 2 ) arctan ⁡ x a − a 2 x + C \begin{equation} 120.\,\int\!\! x\arctan \frac{x}{a}dx = \frac{1}{2}(a^2+x^2)\arctan \frac{x}{a}-\frac{a}{2}x+C \end{equation} 120.xarctanaxdx=21(a2+x2)arctanax2ax+C

121. ∫ ⁣ ⁣ x 2 arctan ⁡ x a d x = x 3 3 arctan ⁡ x a − a 6 x 2 + a 3 6 ln ⁡ ( a 2 + x 2 ) + C \begin{equation} 121.\,\int\!\! x^2 \arctan \frac{x}{a}dx = \frac{x^3}{3}\arctan \frac{x}{a} - \frac{a}{6}x^2+ \frac{a^3}{6}\ln (a^2+x^2)+C \end{equation} 121.x2arctanaxdx=3x3arctanax6ax2+6a3ln(a2+x2)+C

含有指数函数的积分

122. ∫ ⁣ ⁣ a x d x = 1 ln ⁡ a a x + C \begin{equation} 122.\,\int\!\! a^x dx = \frac{1}{\ln a} a^x +C \end{equation} 122.axdx=lna1ax+C

123. ∫ ⁣ ⁣ e a x d x = 1 a e a x + C \begin{equation} 123.\,\int\!\! e^{ax}dx = \frac{1}{a} e ^{ax}+C \end{equation} 123.eaxdx=a1eax+C

124. ∫ ⁣ ⁣ x e a x d x = 1 a 2 ( a x − 1 ) e a x + c \begin{equation} 124.\,\int\!\! xe^{ax}dx=\frac{1}{a^2}(ax-1)e^{ax}+c \end{equation} 124.xeaxdx=a21(ax1)eax+c

125. ∫ ⁣ ⁣ x n e a x d x = 1 a x n e a x − n a ∫ ⁣ ⁣ x n − 1 e a x d x \begin{equation} 125.\,\int\!\! x^n e^{ax}dx=\frac{1}{a}x^n e^{ax}- \frac{n}{a}\int\!\! x^{n-1} e^{ax}dx \end{equation} 125.xneaxdx=a1xneaxanxn1eaxdx

126. ∫ ⁣ ⁣ x a x d x = x ln ⁡ a a x − 1 ( ln ⁡ a ) 2 a x + C \begin{equation} 126.\,\int\!\! xa^x dx= \frac{x}{\ln a}a^x - \frac{1}{(\ln a)^2}a^x+C \end{equation} 126.xaxdx=lnaxax(lna)21ax+C

127. ∫ ⁣ ⁣ x n a x d x = 1 ln ⁡ a x n a x − n ln ⁡ a ∫ ⁣ ⁣ x n − 1 a x d x \begin{equation} 127.\,\int\!\! x^n a^x dx=\frac{1}{\ln a}x^na^x - \frac{n}{\ln a}\int\!\! x^{n-1} a^x dx \end{equation} 127.xnaxdx=lna1xnaxlnanxn1axdx

128. ∫ ⁣ ⁣ e a x sin ⁡ b x d x = 1 a 2 + b 2 e a x ( a sin ⁡ b x − b cos ⁡ b x ) + C \begin{equation} 128.\,\int\!\! e^{ax} \sin bx dx = \frac{1}{a^2+b^2}e^{ax}(a\sin bx -b \cos bx)+C \end{equation} 128.eaxsinbxdx=a2+b21eax(asinbxbcosbx)+C

129. ∫ ⁣ ⁣ e a x cos ⁡ b x d x = 1 a 2 + b 2 e a x ( b sin ⁡ b x + a cos ⁡ b x ) + C \begin{equation} 129.\,\int\!\! e^{ax}\cos bx dx = \frac{1}{a^2+b^2} e^{ax} (b \sin bx + a \cos bx) +C \end{equation} 129.eaxcosbxdx=a2+b21eax(bsinbx+acosbx)+C

130. ∫ ⁣ ⁣ e a x sin ⁡ n b x d x = 1 a 2 + b 2 n 2 e a x sin ⁡ n − 1 b x ( a sin ⁡ b x − n b cos ⁡ b x ) \begin{equation} 130.\,\int\!\! e^{ax}\sin ^n bx dx = \frac{1}{a^2+b^2n^2}e^{ax}\sin ^{n-1}bx (a \sin bx - nb \cos bx) \end{equation} 130.eaxsinnbxdx=a2+b2n21eaxsinn1bx(asinbxnbcosbx)

+ n ( n − 1 ) b 2 a 2 + b 2 n 2 ∫ ⁣ ⁣ e a x sin ⁡ n − 2 b x d x \begin{equation} \qquad \qquad \qquad \qquad \qquad+ \frac{n(n-1)b^2}{a^2+b^2n^2}\int\!\! e^{ax}\sin ^{n-2}bx dx \notag \end{equation} +a2+b2n2n(n1)b2eaxsinn2bxdx

131. ∫ ⁣ ⁣ e a x cos ⁡ n b x d x = 1 a 2 + b 2 n 2 e a x cos ⁡ n − 1 b x ( a cos ⁡ b x + n b sin ⁡ b x ) \begin{equation} 131.\,\int\!\! e^{ax} \cos ^n bx dx = \frac{1}{a^2+b^2n^2} e^{ax} \cos ^{n-1} bx (a\cos bx + nb \sin bx) \end{equation} 131.eaxcosnbxdx=a2+b2n21eaxcosn1bx(acosbx+nbsinbx)

+ n ( n − 1 ) b 2 a 2 + b 2 n 2 ∫ ⁣ ⁣ e a x cos ⁡ n − 2 b x d x \begin{equation} \qquad \qquad \qquad \qquad \qquad + \frac{n(n-1)b^2}{a^2+b^2n^2} \int\!\! e^{ax} \cos ^{n-2}bx dx \notag \end{equation} +a2+b2n2n(n1)b2eaxcosn2bxdx

含有对数函数的积分

132. ∫ ⁣ ⁣ ln ⁡ x d x = x ln ⁡ x − x + C \begin{equation} 132. \, \int\!\!\ln x dx=x\ln x -x +C \end{equation} 132.lnxdx=xlnxx+C

133. ∫ ⁣ ⁣ d x x ln ⁡ x = ln ⁡ ∣ ln ⁡ x ∣ + C \begin{equation} 133.\,\int\!\! \frac {dx}{x\ln x}= \ln \vert \ln x \vert +C \end{equation} 133.xlnxdx=lnlnx+C

134. ∫ ⁣ ⁣ x n ln ⁡ x d x = 1 n + 1 x n + 1 ( ln ⁡ x − 1 n + 1 ) + C \begin{equation} 134. \,\int\!\! x^n\ln x dx=\frac{1}{n+1}x^{n+1}(\ln x - \frac{1}{n+1})+C \end{equation} 134.xnlnxdx=n+11xn+1(lnxn+11)+C

135. ∫ ⁣ ⁣ ( ln ⁡ x ) n d x = x ( ln ⁡ x ) n − n ∫ ⁣ ⁣ ( ln ⁡ x ) n − 1 d x \begin{equation} 135. \,\int\!\! (\ln x)^n dx=x(\ln x)^n - n \int\!\!(\ln x)^{n-1} dx \end{equation} 135.(lnx)ndx=x(lnx)nn(lnx)n1dx

136. ∫ ⁣ ⁣ x m ( ln ⁡ x ) n d x = 1 m + 1 x m + 1 ( ln ⁡ x ) n − n m + 1 ∫ ⁣ ⁣ x m ( ln ⁡ x ) n − 1 d x \begin{equation} 136. \,\int\!\! x^m (\ln x)^n dx=\frac{1}{m+1}x^{m+1}(\ln x)^n - \frac {n}{m+1} \int\!\! x^m (\ln x) ^{n-1} dx \end{equation} 136.xm(lnx)ndx=m+11xm+1(lnx)nm+1nxm(lnx)n1dx

含有双曲函数的积分

137. ∫ ⁣ ⁣ sinh ⁡ x d x = cosh ⁡ x + C \begin{equation} 137. \,\int\!\! \sinh x dx = \cosh x +C \end{equation} 137.sinhxdx=coshx+C

138. ∫ ⁣ ⁣ cosh ⁡ x d x = sinh ⁡ x + C \begin{equation} 138. \,\int\!\! \cosh x dx = \sinh x +C \end{equation} 138.coshxdx=sinhx+C

139. ∫ ⁣ ⁣ t h x d x = ln ⁡ cosh ⁡ x + C \begin{equation} 139. \,\int\!\! th x dx =\ln \cosh x +C \end{equation} 139.thxdx=lncoshx+C

140. ∫ ⁣ ⁣ sinh ⁡ 2 x d x = − x 2 + 1 4 sinh ⁡ 2 x + C \begin{equation} 140. \,\int\!\! \sinh ^2 x dx = -\frac{x}{2} + \frac{1}{4} \sinh 2x +C \end{equation} 140.sinh2xdx=2x+41sinh2x+C

141. ∫ ⁣ ⁣ cosh ⁡ 2 x d x = x 2 + 1 4 sinh ⁡ 2 x + C \begin{equation} 141. \,\int\!\! \cosh^2 x dx = \frac{x}{2}+\frac{1}{4} \sinh 2x +C \end{equation} 141.cosh2xdx=2x+41sinh2x+C

定积分

142. ∫ − π π cos ⁡ n x d x = ∫ π π sin ⁡ n x d x = 0 \begin{equation} 142. \int^{\pi}_{-\pi} \cos nx dx = \int^{\pi}_{\pi}\sin nx dx=0 \end{equation} 142.ππcosnxdx=ππsinnxdx=0

143. ∫ − π π cos ⁡ m x sin ⁡ n x d x = 0 \begin{equation} 143. \,\int^ {\pi} _{-\pi} \cos mx \sin nx dx =0 \end{equation} 143.ππcosmxsinnxdx=0

144. ∫ − π π cos ⁡ m x cos ⁡ n x d x = { 0 , m ≠ n π , m = n \begin{equation} 144. \,\int^{\pi} _{-\pi} \cos mx \cos nx dx =\left \{ \begin{array}{cc} 0, & m \neq n \\ \pi, & m=n \end{array} \right. \end{equation} 144.ππcosmxcosnxdx={0,π,m=nm=n

145. ∫ − π π sin ⁡ m x sin ⁡ n x d x = { 0 , m ≠ n π , m = n \begin{equation} 145. \,\int ^\pi _{-\pi} \sin mx \sin nx dx = \left \{ \begin{array}{cc} 0, & m \neq n \\ \pi, & m=n \end{array} \right. \end{equation} 145.ππsinmxsinnxdx={0,π,m=nm=n

146. ∫ 0 π sin ⁡ m x sin ⁡ n x d x = ∫ 0 π cos ⁡ m x cos ⁡ n x d x = { 0 , m ≠ n π / 2 , m = n \begin{equation} 146. \,\int^\pi _0 \sin mx \sin nx dx= \int ^\pi _0 \cos mx \cos nx dx = \left \{ \begin{array}{cc} 0, & m \neq n \\ \pi/2, & m=n \end{array} \right. \end{equation} 146.0πsinmxsinnxdx=0πcosmxcosnxdx={0,π/2,m=nm=n

147. I n = ∫ 0 π 2 sin ⁡ n x d x = ∫ 0 π 2 cos ⁡ n x d x \begin{equation} 147. I_n =\,\int ^{\frac{\pi}{2}} _0 \sin ^n x dx = \int ^{\frac{\pi}{2}} _0 \cos ^n x dx \end{equation} 147.In=02πsinnxdx=02πcosnxdx

I n = n − 1 n I n − 2 \begin{equation} \qquad I_n= \frac{n-1}{n} I _{n-2} \notag \end{equation} In=nn1In2

{ I n = n − 1 n . n − 3 n − 2 . … 4 5 . 2 3 (n为大于1的正奇数) , I 1 = 1 I n = n − 1 n . n − 3 n − 2 . … 3 4 . 1 2 . π 2 (n为正偶数) , I 0 = π 2 \begin{equation} \qquad \left \{ \begin{aligned} I_n&= \frac{n-1}{n}.\frac{n-3}{n-2}.\dots \frac{4}{5} .\frac{2}{3} \quad \text{(n为大于1的正奇数)},I_1=1 \\ I_n&= \frac{n-1}{n} . \frac{n-3}{n-2} . \dots \frac{3}{4} .\frac{1}{2}. \frac{\pi}{2} \quad \text{(n为正偶数)},I_0= \frac{\pi}{2} \end{aligned} \right.\notag \end{equation} InIn=nn1.n2n3.54.32(n为大于1的正奇数),I1=1=nn1.n2n3.43.21.2π(n为正偶数),I0=2π

http://www.fp688.cn/news/160108.html

相关文章:

  • 做网站公司上班违法吗做小程序的公司
  • 怎样做网站导购教程淘宝店铺怎么引流推广
  • 专门做ryona的网站谷歌seo视频教程
  • 郑州大型网站建设价格电商运营怎么做如何从零开始
  • 做网站几个步骤广州网络推广公司有哪些
  • 深圳摇号申请网站导购网站怎么推广
  • 怎么做网站图标企业公司网站建设
  • 免费推广网站在线长春seo排名收费
  • 海口网站排名推广网络营销的目的和意义
  • 最简单的网站建设网络推广有哪些途径
  • 网站里的聊天怎么做的谷歌外链
  • 企业网站报价单seo专员的工作内容
  • 免费咨询图标谷歌seo网络公司
  • 一键建站源码教育培训网站
  • 企业网站建设系统百度在线客服人工服务
  • vue如何网站开发c++线上培训机构哪个好
  • 郑州 网站建设公司seo排名分析
  • 服装网站建设策划书可行性分析网站运营管理
  • 网络营销推广的常用方法有哪些西安seo网站关键词优化
  • 网站热力图用ps怎么做千锋教育官网
  • 网站飘窗建设合同韶关今日头条新闻
  • 济南网站建设599路由器优化大师
  • 考幼师证去哪个网站做试题营销策略怎么写范文
  • 威宁建设局网站seo实战论坛
  • 网站建设中 显示 虚拟机防恶意竞价点击软件
  • 有限公司技术支持 东莞网站建设百度推广要多少钱
  • 校园网站模板西安网站外包
  • 榆次住房保障和城乡建设局网站西安seo霸屏
  • 学生做网站的目的嘉兴网站建设
  • 怎么弄个人网站搜狗友链交换