当前位置: 首页 > news >正文

蛋糕网站建设毕业论文西安seo网站关键词

蛋糕网站建设毕业论文,西安seo网站关键词,购物网站产品做促销能赚钱吗,做移动网站优化排系列文章目录 spark第一章:环境安装 spark第二章:sparkcore实例 spark第三章:工程化代码 文章目录系列文章目录前言一、三层架构二、拆分WordCount1.三层拆分2.代码抽取总结前言 我们上一次博客,完成了一些案例的练习&#xff0…

系列文章目录

spark第一章:环境安装
spark第二章:sparkcore实例
spark第三章:工程化代码


文章目录

  • 系列文章目录
  • 前言
  • 一、三层架构
  • 二、拆分WordCount
    • 1.三层拆分
    • 2.代码抽取
  • 总结


前言

我们上一次博客,完成了一些案例的练习,现在我要要进行一些结构上的完善,上一次的案例中,代码的耦合性非常高,想要修改就十分复杂,而且有很多代码都在重复使用,我们想要把一些重复的代码抽取出来,进而完成解耦合的操作,提高代码的复用。


一、三层架构

大数据的三层架构其中包括
controller(控制层):负责调度各模块
service(服务层):存放逻辑代码
dao(持久层):进行文件交互
现在我们分别给各层创建一个包
在这里插入图片描述
解释一下其中几个
application:项目的启动文件
bean:存放实体类
common:存放这个项目的通用代码
util:存放通用代码(所有项目均可)

二、拆分WordCount

万物皆可WordCount我们就以上次的WordCount为例操作。放一下源代码

object WordCount {def main(args: Array[String]): Unit = {//  创建 Spark 运行配置对象val sparkConf: SparkConf = new SparkConf().setMaster("local[*]").setAppName("WordCount")// 创建 Spark 上下文环境对象(连接对象)val sc : SparkContext = new SparkContext(sparkConf)// 读取文件 获取一行一行的数据val lines: RDD[String] = sc.textFile("datas/word.txt")// 将一行数据进行拆分val words: RDD[String] = lines.flatMap(_.split(" "))// 将数据根据单次进行分组,便于统计val wordToOne: RDD[(String, Int)] = words.map(word => (word, 1))// 对分组后的数据进行转换val wordToSum: RDD[(String, Int)] = wordToOne.reduceByKey(_ + _)// 打印输出val array: Array[(String, Int)] = wordToSum.collect()array.foreach(println)sc.stop()}}

1.三层拆分

在进行数据抽取之前,我们先进行简单的三层架构拆分
记得把包名路径换成自己的
在这里插入图片描述
WordCountDao.scala
负责文件交互,也就是第一步的读取文件

package com.atguigu.bigdata.spark.core.rdd.framework1.daoimport com.atguigu.bigdata.spark.core.rdd.framework1.application.WordCountApplication.scclass WordCountDao {def readFile(path:String) ={sc.textFile(path)}
}

WordCountService.scala
负责逻辑运算

package com.atguigu.bigdata.spark.core.rdd.framework1.serviceimport com.atguigu.bigdata.spark.core.rdd.framework1.dao.WordCountDaoimport org.apache.spark.rdd.RDDclass WordCountService {private val wordCountDao =new WordCountDao()def dataAnalysis(): Array[(String, Int)] ={val lines: RDD[String] =wordCountDao.readFile("datas/word.txt")val words: RDD[String] = lines.flatMap(_.split(" "))val wordToOne: RDD[(String, Int)] = words.map(word => (word, 1))val wordToSum: RDD[(String, Int)] = wordToOne.reduceByKey(_ + _)val array: Array[(String, Int)] = wordToSum.collect()array}
}

WordCountController.scala
负责调度项目

package com.atguigu.bigdata.spark.core.rdd.framework1.controllerimport com.atguigu.bigdata.spark.core.rdd.framework1.service.WordCountServiceclass WordCountController {private val wordCountService =new WordCountService()def dispath(): Unit ={val array=wordCountService.dataAnalysis()array.foreach(println)}
}

WordCountApplication.scala
main方法启动项目

package com.atguigu.bigdata.spark.core.rdd.framework1.applicationimport com.atguigu.bigdata.spark.core.rdd.framework1.controller.WordCountController
import org.apache.spark.{SparkConf, SparkContext}object WordCountApplication extends App {val sparkConf: SparkConf = new SparkConf().setMaster("local[*]").setAppName("WordCount")val sc : SparkContext = new SparkContext(sparkConf)val controller = new WordCountController()controller.dispath()sc.stop()
}

在这里插入图片描述

2.代码抽取

接下来我们把一些常用或者会重复实用的代码抽取出来。
创建四个Train,用来抽取四个文件
在这里插入图片描述
TApplication.scala
其中通用代码为环境创建

package com.atguigu.bigdata.spark.core.rdd.framework.commonimport com.atguigu.bigdata.spark.core.rdd.framework.util.EnvUtil
import org.apache.spark.{SparkConf, SparkContext}trait TApplication {def start(master: String="local[*]", app: String="Application")(op: =>Unit): Unit ={val sparkConf: SparkConf = new SparkConf().setMaster(master).setAppName(app)val sc : SparkContext = new SparkContext(sparkConf)EnvUtil.put(sc)try {op}catch {case ex=>println(ex.getMessage)}sc.stop()EnvUtil.clear()}
}

TController.scala
定义调度Train之后由Controller进行重写

package com.atguigu.bigdata.spark.core.rdd.framework.commontrait TController {def dispatch():Unit
}

TDao.scala
WordCount通用读取,路径为参数

package com.atguigu.bigdata.spark.core.rdd.framework.commonimport com.atguigu.bigdata.spark.core.rdd.framework.util.EnvUtil
import org.apache.spark.rdd.RDDtrait TDao {def readFile(path:String): RDD[String] ={EnvUtil.take().textFile(path)}
}

TService.scala
和Controller类似,由Service重写

package com.atguigu.bigdata.spark.core.rdd.framework.commontrait TService {def dataAnalysis():Any
}

在这里插入图片描述
定义环境,确保所有类都能访问sc线程
EnvUtil.scala

package com.atguigu.bigdata.spark.core.rdd.framework.utilimport org.apache.spark.SparkContextobject EnvUtil {private val scLocal =new ThreadLocal[SparkContext]()def put(sc:SparkContext): Unit ={scLocal.set(sc)}def take(): SparkContext = {scLocal.get()}def clear(): Unit ={scLocal.remove()}
}

修改三层架构
WordCountApplication.scala

package com.atguigu.bigdata.spark.core.rdd.framework.applicationimport com.atguigu.bigdata.spark.core.rdd.framework.common.TApplication
import com.atguigu.bigdata.spark.core.rdd.framework.controller.WordCountControllerobject WordCountApplication extends App with TApplication{start(){val controller = new WordCountController()controller.dispatch()}}

WordCountController.scala

package com.atguigu.bigdata.spark.core.rdd.framework.controllerimport com.atguigu.bigdata.spark.core.rdd.framework.common.TController
import com.atguigu.bigdata.spark.core.rdd.framework.service.WordCountServiceclass WordCountController extends TController{private val WordCountService = new WordCountService()def dispatch(): Unit ={val array: Array[(String, Int)] = WordCountService.dataAnalysis()array.foreach(println)}
}

WordCountDao.scala

package com.atguigu.bigdata.spark.core.rdd.framework.daoimport com.atguigu.bigdata.spark.core.rdd.framework.common.TDaoclass WordCountDao extends TDao{}

WordCountService.scala

package com.atguigu.bigdata.spark.core.rdd.framework.serviceimport com.atguigu.bigdata.spark.core.rdd.framework.common.TService
import com.atguigu.bigdata.spark.core.rdd.framework.dao.WordCountDao
import org.apache.spark.rdd.RDDclass WordCountService extends TService{private val wordCountDao=new WordCountDao()def dataAnalysis(): Array[(String, Int)] = {val lines: RDD[String] = wordCountDao.readFile("datas/word.txt")val words: RDD[String] = lines.flatMap(_.split(" "))val wordToOne: RDD[(String, Int)] = words.map(word => (word, 1))val wordToSum: RDD[(String, Int)] = wordToOne.reduceByKey(_ + _)val array: Array[(String, Int)] = wordToSum.collect()array}}

再次运行
在这里插入图片描述


总结

对spark项目代码的规范就到这里,确实有点复杂,我也不知道说清楚没有。

http://www.fp688.cn/news/156559.html

相关文章:

  • 郑州网站建设企起网站seo推广优化
  • 从哪里设置网站关键词熊猫关键词工具官网
  • 全网seo优化电话seo排名赚挂机
  • 好的建网站的书籍百度数字人内部运营心法曝光
  • 青海省住房和城乡建设局网站首页搜索引擎网站推广如何优化
  • 17网站一起做网店怎么拿货seo智能优化软件
  • 网站备案 中国2022最近十大的新闻热点
  • 大站网站建设在线网页制作系统搭建
  • 合肥网站建设cnfg佛山企业用seo策略
  • 企业网站程序制作sem代运营公司
  • 小说网站开发l电商运营自学全套教程
  • 网站片头动画用什么软件做的网络营销可以做什么工作
  • 一台云服务器可以做几个网站网站seo优化培训
  • 公司网站的专题策划媒体资源网官网
  • 如何建立公司网站电话搜索引擎营销的主要模式有哪些
  • 银座商城官网郑州seo外包服务
  • 手机装修设计软件app班级优化大师功能介绍
  • 电子商务推广网站北京seo公司司
  • 深圳专业网站公司企业培训内容有哪些
  • 中国商标注册网官方网站百度竞价推广方案范文
  • 广州网站策划公司河南关键词排名顾问
  • 网站开发的教学视频教程海口网站关键词优化
  • 成都大丰五块石网站建设宁德市蕉城区疫情
  • 网站投票制作seo做关键词怎么收费的
  • 网站建设需要用到那些语言搜索引擎优化的英语简称
  • 杭州网站开发工资建站
  • 明年做啥网站能致富志鸿优化设计
  • 什么样的网站可以做站群百度怎么打广告
  • 网站开发建设需要什么淘宝推广费用多少钱一天
  • 页面设计素材网站郑州做网站推广哪家好