当前位置: 首页 > news >正文

网站开发公司的推广费用西安seo服务外包

网站开发公司的推广费用,西安seo服务外包,武汉网络设计,苏州万户网络科技有限公司目录 1.算法流程简介 2.算法核心代码 3.算法效果展示 1.算法流程简介 """ AHP:层次分析法,层次分析法还是比较偏向于主观的判断的,所以在建模的时候尽可能不要去使用层次分析法 不过在某些创新的评价方法上,也是能够运用层次分析使得评价变得全面一些,有可…

目录

1.算法流程简介

2.算法核心代码

3.算法效果展示

1.算法流程简介

"""
AHP:层次分析法,层次分析法还是比较偏向于主观的判断的,所以在建模的时候尽可能不要去使用层次分析法
不过在某些创新的评价方法上,也是能够运用层次分析使得评价变得全面一些,有可能险中求胜,获得评委的青睐的
"""
具体流程如下:
#1.首先进行预备信息的求解便于一致性检验
#2.进行一致性检验,判断是否可以使用层次分析法
#3.求解权重的三种方法(算术平均值法,几何平均值法,特征向量法)

2.算法核心代码

"""
AHP:层次分析法,层次分析法还是比较偏向于主观的判断的,所以在建模的时候尽可能不要去使用层次分析法
不过在某些创新的评价方法上,也是能够运用层次分析使得评价变得全面一些,有可能险中求胜,获得评委的青睐的
"""
import numpy as np
class AHP:
#1.首先进行预备信息的求解便于一致性检验def __init__(self,cmatrix):self.arr=cmatrix#导入比较矩阵#获取比较矩阵的相关数据self.n=cmatrix.shape[0]#比较矩阵的大小#设置RI便于一致性检验self.RI= [0, 0, 0.52, 0.89, 1.12, 1.26, 1.36, 1.41, 1.46, 1.49, 1.52, 1.54, 1.56, 1.58,1.59]#求解特征值和特征向量np.linalg.eig()会一起返回self.eig_val, self.eig_vector = np.linalg.eig(self.arr)#求解矩阵的最大特征值self.max_eig_val = np.max(self.eig_val)#矩阵最大特征值对应的特征向量self.max_eig_vector = self.eig_vector[:, np.argmax(self.eig_val)].real#矩阵的一致性指标CIself.CI_val = (self.max_eig_val - self.n) / (self.n - 1)#矩阵的一致性比例CRself.CR_val = self.CI_val / (self.RI[self.n - 1])
#2.进行一致性检验,判断是否可以使用层次分析法def consist_test(self):#一致性指标CIprint("比较矩阵的CI值为:",str(self.CI_val))#一致性指标CRprint("比较矩阵的CR值为:",str(self.CR_val))if self.n==2:print("仅有两个子因素,不存在一致性冲突问题")else:if self.CR_val<0.1:#CR<0.1,一致性问题通过print("比较矩阵CR值为:",str(self.CR_val),"<0.1,通过一致性检验!")return Trueelse:print("比较矩阵CR值为:",str(self.CR_val),">0.1,未通过一致性检验,不能使用层次分析法!")return False
#3.求解权重的三种方法:
#1.算术平均法def Arithmetic_averaging_method(self):#求每一列的和sum_col=np.sum(self.arr,axis=0)#归一化处理array_std=self.arr/sum_col#计算权重向量weight_Arithmetic_averaging=np.sum(array_std,axis=1)/self.nprint("算术平均法求得的权重为:",weight_Arithmetic_averaging)return weight_Arithmetic_averaging#2.几何平均法def Geometric_averaging_method(self):# 求矩阵的每列的积col_plus = np.product(self.arr, axis=0)# 将得到的积向量的每个分量进行开n次方array_power = np.power(col_plus, 1 / self.n)# 将列向量归一化weight_Geometric_averaging = array_power / np.sum(array_power)# 打印权重向量print("几何平均法求得的权重为:", weight_Geometric_averaging)# 返回权重向量的值return weight_Geometric_averaging#3.特征值权重法def Eigenvalue_weighting_method(self):# 将矩阵最大特征值对应的特征向量进行归一化处理就得到了权重weight_Eigenvalue_weighting = self.max_eig_vector / np.sum(self.max_eig_vector)# 打印权重向量print("特征值权重法法求得的权重为:", weight_Eigenvalue_weighting)# 返回权重向量的值return weight_Eigenvalue_weightingdef test_run_demo():#comparsion_matrix可以随意修改comparsion_matrix=np.array([[1,1/4,1/9],[4,1,1/2],[9, 2, 1]])weight1 = AHP(comparsion_matrix).Arithmetic_averaging_method()weight2 = AHP(comparsion_matrix).Geometric_averaging_method()weight3 = AHP(comparsion_matrix).Eigenvalue_weighting_method()#运行区域:
test_run_demo()

3.算法效果展示

算术平均法求得的权重为: [0.07243906 0.30125047 0.62631047]
几何平均法求得的权重为: [0.7374984  0.17727613 0.08522547]
特征值权重法法求得的权重为: [0.07239208 0.30116321 0.62644471]
http://www.fp688.cn/news/156397.html

相关文章:

  • 查邮箱注册的网站网页seo优化
  • 蚌埠网站开发外包微信营销管理软件
  • 郑州网站推广服务万网登录入口
  • 酒店网站html模板靠谱的推广平台有哪些
  • 求一个全部用div做的网站深圳白帽优化
  • 织梦电影网站免费模板北京网站优化专家
  • 有没有做租赁的网站关键词优化怎么做
  • 云主机网站的空间在哪里看什么叫关键词
  • 杭州城乡建设委员会的网站网络宣传推广
  • 班级手机网站墨刀怎样做网络营销主要是什么
  • wordpress 443端口系统优化大师下载
  • 网站备份还原推推蛙seo顾问
  • wordpress 政府网站广州百度网站排名优化
  • 建零售网站还是广州seo营销培训
  • 适合代码新手做的网站石家庄高级seo经理
  • 企业网站的推广方法网站开发外包
  • 美术设计沈阳网站seo公司
  • 济南企业网站推广方法推广资源seo
  • 射阳建设局网站手机自动排名次的软件
  • 商城外贸网站设计影视后期培训班一般要多少钱
  • 西安高端网站设计公司深圳新闻最新事件
  • 网站建设如何提案厦门seo排名优化公司
  • 文件管理系统 wordpressseo数据统计分析工具有哪些
  • 网站创建网站个人引流推广怎么做
  • 列表怎么做网站百度seo服务方案
  • 泉州市网站api建设百度开户代理
  • 张店政府网站建设哪家好大数据技术主要学什么
  • 校园网站推广方案怎么做线上运营的5个步骤
  • wordpress 播放器aso搜索优化
  • 环保网站建设的目的百度一下浏览器