当前位置: 首页 > news >正文

乐都区wap网站建设公司疫情防控最新政策

乐都区wap网站建设公司,疫情防控最新政策,wordpress 增加用户字段,珠海澳门网站建设公司哪家好目录 环境配置 实验1 数据 作业2 环境配置 实验开始前先配置环境 以实验室2023安装的版本为例: 1、安装anaconda:(anaconda自带Python,安装了anaconda就不用再安装Python了) 下载并安装 Anaconda3-2022.10-Windows-x86_64.ex…

目录

环境配置

实验1 数据

作业2


环境配置

实验开始前先配置环境

以实验室2023安装的版本为例:

1、安装anaconda:(anaconda自带Python,安装了anaconda就不用再安装Python了
下载并安装 Anaconda3-2022.10-Windows-x86_64.exe

镜像站下载地址(点击即可)

自己选择安装路径,其他使用默认选项。

(1)在“Advanced Installation Options”中,
勾选“Add Anaconda3 to my PATH environment variable.”(“添加Anaconda至我的环境变量。”)。

(2)勾选“Register Anaconda3 as my default Python 3.9”。

 

2、安装pycharm(在官网安装社区版就够用了

pycharm官网

下载并安装 pycharm-community-2022.2.4.exe 

3、打开cmd窗口,输入以下命令

conda create -n  DMEv  pip python=3.8

 记住DMEV所在的磁盘路径C:\Users\dell\.conda\envs\DMEV

# 如需删除环境,使用命令

conda remove -n DMEv    --all

 安装要用到的Python库:

activate   DMEv  
pip install numpy==1.20.0 --index-url https://mirrors.aliyun.com/pypi/simple/
pip install matplotlib==3.3.4 --index-url https://mirrors.aliyun.com/pypi/simple/
pip install opencv_python==4.4.0.40 --index-url https://mirrors.aliyun.com/pypi/simple/
pip install scipy==1.6.0 --index-url https://mirrors.aliyun.com/pypi/simple/
pip install scikit-learn==0.24.1 --index-url https://mirrors.aliyun.com/pypi/simple/ 
pip install h5py==2.10.0 --index-url https://mirrors.aliyun.com/pypi/simple/ 
pip install mnist==0.2.2 --index-url https://mirrors.aliyun.com/pypi/simple/ 


4、测试

在Pycharm中创建项目时,DMEV所在的路径下选择python.exe(和上面配置的对应)


在Pycharm中新建项目,配置 interpreter,运行以下代码:(没有报错,则导入成功

import cv2 as cv
import numpy as np
from sklearn.decomposition import PCA
import mnist
import matplotlib.pyplot as plt 

实验1 数据

一、实验目的

(1)练习和掌握python的基本使用。

(2)理解数据类型、数据质量、数据预处理、相似性和相异性度量的概念

(3)理解各种相似性和相异性度量(测度)及其含义,并且能编程计算。

二、实验内容

1编程实现任意给定两个相同维度的向量之间的欧氏距离计算函数dist_E(x,y)。

输入:两个任意k维向量x和y,其中k的值随由数据决定。如x=[3,20,3.5], y=[-3,34,7]。

import numpy as npdef dist_E(vect1, vect2):return np.sqrt(sum(np.power((vect1-vect2),2)))if __name__ == "__main__":x=np.array([3,20,3.5])y=np.array([-3,34,7])dist=dist_E(x,y)print(dist)

2编程实现任意给定两个相同维度的向量之间的夹角余弦相似度计算函数sim=sim_COS(x,y)。输入:两个任意k维向量x和y,其中k的值由数据决定。

import numpy as npdef sim_COS(x, y):num = x.dot(y.T)denom = np.linalg.norm(x) * np.linalg.norm(y)return num / denomif __name__ == "__main__":x=np.array([3, 2, 0, 5, 0, 0, 0, 2, 0, 0])y=np.array([1, 0, 0, 0, 0, 0, 0, 1, 0, 2])sim=sim_COS(x,y)print(sim)

3编程实现任意给定两个相同维度的布尔向量之间的Jaccard系数计算函数dist1=dist_Jaccard(x,y)。

import numpy as npdef sim_Jaccard(vect1, vect2):sim=-1if(vect1.size!=vect2.size):print("length of input vectors must agree")else:ind1=np.logical_and(vect1==1,vect2==1)ind2=np.logical_or(vect1==1,vect2==1)x=vect1[ind1]y=vect2[ind2]n1=np.size(x)n2=np.size(y)sim=n1/n2return simif __name__ == "__main__":x=np.array([1, 0, 0, 0, 0, 0, 1, 0, 0, 0])y=np.array([1, 0, 0, 0, 0, 0, 0, 0, 0, 1])dist=sim_Jaccard(x,y)print(dist)

4编程实现任意给定两个相同维度的布尔向量之间的简单匹配系数计算函数dist1=dist_SMC(x,y)。

import numpy as npdef sim_SMC(vect1, vect2):sim = -1if (vect1.size != vect2.size):print("length of input vectors must agree")else:ind0 = np.logical_and(vect1 == 0, vect2 == 0)ind1 = np.logical_and(vect1 == 1, vect2 == 1)ind2 = np.logical_or(vect1 == 1, vect2 == 1)x = vect1[ind1]y = vect1[ind2]z=vect1[ind0]n1 = np.size(x)n2 = np.size(y)n3 = np.size(z)sim = (n1+n3) / (n2+n3)return simif __name__ == "__main__":x=np.array([1, 0, 0, 0, 0, 0, 1, 0, 0, 0])y=np.array([1, 0, 0, 0, 0, 0, 0, 0, 0, 1])dist=sim_SMC(x,y)print(dist)

作业2

1.数据的属性已知,数据的类别也已知,这样的数据叫做___________样本

我的答案:训练

2.数据的属性已知,数据的类别未知,这样的数据叫做___________样本

我的答案:测试

3.在最近邻分类算法中,可以通过KD树来加速k近邻的搜索。

我的答案:

4.已知有5个训练样本,分别为

样本1,属性为:[2,0,2]  类别 0

样本2,属性为:[1,5,2]  类别 1

样本3,属性为:[3,2,3]   类别 1

样本4,属性为:[3,0,2]   类别  0

样本5,属性为:[1,0,6]   类别 0

有1个测试样本,属性为:[1,0,2]

(1) 测试样本到5个训练样本(样本1、2、3、4、5)的欧氏距离依次为: ()()()()()。    

我的答案:1、5、3、2、4

(2) K=3,距离测试样本最近的k个训练样本依次为:样本  ()    、样本  ()  、样本 ()     

我的答案:1、4、3

(3)距离最近的k个训练样本类别依次为:类别()、类别()、类别()

我的答案:0、0、1

(4) KNN算法得到的测试样本的类别为:类别 ()

我的答案:0

未完待续

http://www.fp688.cn/news/154324.html

相关文章:

  • 物联网项目设计方案厦门seo排名优化方式
  • 建设网站的运行费包括什么佛山网站建设方案咨询
  • 实验一 电子商务网站建设与维护百度推广售后电话
  • 做电子外贸网站seo是什么的简称
  • 做网站找 汇搜网络目前较好的crm系统
  • 武汉网站建设制作微信怎么推广自己的产品
  • 代码生成器应用台州做优化
  • 假链接制作网站厦门排名推广
  • 关于网站建设的合同百度seo新站优化
  • java做博客网站有哪些功能志鸿优化网
  • ai做图标教程网站成都网站排名生客seo怎么样
  • 自己的服务器做网站要备案网络营销活动策划方案模板
  • 个人可以做网站么百度公司总部在哪里
  • 成都住建局官网地址百度搜索引擎优化
  • 深圳网站优化建设微商怎样让客源主动加你
  • 苏州好的做网站的公司有哪些教育培训机构管理系统
  • 东莞网站建设公司百推免费seo快速排名系统
  • 在线直播网站怎么做银川seo
  • 做电影资源缓存网站教程怎么提高百度搜索排名
  • 怎样去同行网站做外连接seo zac
  • 关于建设网站的通知cps推广平台
  • 政府网站建设的意义seo引擎优化平台培训
  • 台州市临海建设局网站小程序开发工具
  • 免费网页游戏在线玩搜索引擎优化涉及的内容
  • 做垃圾词影响网站排名吗超级软文
  • 手机网站建设代理商seo关键词挖掘工具
  • 做sns网站要多大空间注册平台
  • 保定网站设计公司网站推广互联网推广
  • 用网页采集个人信息网站怎么做广州推广引流公司
  • 织梦模仿网站视频今日北京新闻