当前位置: 首页 > news >正文

做网站大模板建站教程

做网站大,模板建站教程,慕课网电子商务网站开发,网站的搭建流程一、分布式的思想 不管是数据也好,计算也好,都没有最大的电脑,而是多个小电脑组合而成。 存储:将3T的文件拆分成若干个小文件,例如每500M一个小文件,将这些小文件存储在不同的机器上 。 -- HDFS 计算&#…

一、分布式的思想

不管是数据也好,计算也好,都没有最大的电脑,而是多个小电脑组合而成。

存储:将3T的文件拆分成若干个小文件,例如每500M一个小文件,将这些小文件存储在不同的机器上 。 -- HDFS

计算:

分:将一个大的任务拆分成多个小的任务,每台机器处理一 个小的任务,并行处理

合:将多个小任务的结果最终再合并生成最终的结果进行返 回问题解决 。

--MapReduce (Hive)

Spark 解决不了存储的问题,spark是搞计算的。你学习了spark,以前的计算引擎都可以作废了。Spark可以做离线的计算可以做准实时(实时计算目前使用Flink比较多)

发展 :计算引擎 ---存储还得是hdfs

第一代计算引擎:MapReduce:用廉价机器实现分布式大数据处理

第二代计算引擎:Tez:基于MR优化了DAG,性能比MR快一些

第三代计算引擎:Spark:优先使用内存式计算引擎 ,国内目前主要应用的离线计算引擎

第四代计算引擎:Flink:实时流式计算引擎 , 国内目前最主流实时计算引擎

二、Spark简介 [火花]

1、发展历程

DataBricks官网:https://databricks.com/spark/about

spark的诞生其实是因为MR计算引擎太慢了。

MR计算是基于磁盘的,Spark计算是基于内存的。

spark的发展历程:

2009年,Spark诞生于伯克利AMPLab,伯克利大学的研究性项目。

2014年2月成为Apache顶级项目,同年5月发布Spark 1.0正式版本

2018年Spark2.4.0发布,成为全球最大的开源项目,目前是Apache中的顶级项目之一。

2020年6月Spark发布3.0.0正式版,目前学习的就是3.x

apache给它分配的网站:Apache Spark™ - Unified Engine for large-scale data analytics

定义:基于内存式计算的分布式的统一化的数据分析引擎。

分析引擎:hive 、spark、presto、impala 等。所谓的引擎,狭义理解就是sql

2、spark能做什么?

实现离线数据批处理:类似于MapReduce、Pandas,写代码做处理:代码类的离线数据处理

实现交互式即时数据查询:类似于Hive、Presto、Impala,使 用SQL做即席查询分析:SQL类的离线数据处理

实现实时数据处理:类似于Storm、Flink实现分布式的实时计算:代码类实时计算或者SQL类的实时计算

实现机器学习的开发:代替传统一些机器学习工具

3、spark有哪些部分组成?

Hadoop的组成部分:common、MapReduce、Hdfs、Yarn

Spark Core:Spark最核心的模块,可以基于多种语言实现代码类的离线开发 【类似于MR】

Spark SQL:类似于Hive,基于SQL进行开发,SQL会转换为SparkCore离线程序 【类似Hive】

Spark Streaming:基于SparkCore之上构建了准实时的计算模块 【淘汰了】

Struct Streaming:基于SparkSQL之上构建了结构化实时计算模块 【替代了Spark Streaming】

Spark ML lib:机器学习算法库,提供各种机器学习算法工具,可以基于SparkCore或者SparkSQL实现开发。

开发语言:Python、SQL、Scala、Java、R【Spark的源码是通过Scala语言开发的

一个软件是什么语言写的,跟什么语言可以操作这个软件是两回事儿。

Scala 语言是基于java实现的,底层也需要虚拟机。

4、spark运行有五种模式【重点】

本地模式:Local:一般用于做测试,验证代码逻辑,不是分布式运行,只会启动1个进程来运行所有任务。

集群模式:Cluster:一般用于生产环境,用于实现PySpark程序的分布式的运行

Standalone:Spark自带的分布式资源平台,功能类似于YARN

YARN:Spark on YARN,将Spark程序提交给YARN来运行,工作中主要使用的模式

Mesos:类似于YARN,国外见得多,国内基本见不到

K8s:基于分布式容器的资源管理平台,运维层面的工具。

解释:Spark是一个分布式的分析引擎,所以它部署的时候是分布式的,有用主节点,从节点这些内容。Standalone使用的是Spark自带的分布式资源平台,但是假如一个公司已经有Yarn分析平台了,就没必要再搭建spark分析平台,浪费资源。

学习过程中:本地模式 --> Standalone --> YARN ,将来spark在yarn上跑。

5、spark 为什么比MR快?

1、MR不支持DAG【有向无环图】,计算过程是固定,一个MR 只有1个Map和1个Reduce构成。 一个Map和Reduce是一个过程,和另一个Map和Reduce是不一样的。

从落地到磁盘的那一刻,上一个过程已经结束了,下一个过程和上一个过程没有关系了。

2、MR是一个基于磁盘的计算框架,读写效率比较低

3、MR的Task计算是进程级别的,每次运行一个Task都需要启动一个进程,然后运行结束还是释放进程,比较慢。【一个进程可以包含多个线程,比如qq是一个进程,发消息,传文件是一个个线程】

MapTask:进程

ReduceTask:进程

进程启动和销毁是比较耗时的

spark为什么那么快?

1、Spark支持DAG,一个Spark程序中的过程是不固定,由代码 所决定。

2、Task任务都是线程级别的

3、计算是基于内存的。

 

总结:1.数据结构一个HDFS,一个是RDD

2.计算流结构一个用的MR,一个是DAG

3.中间存储一个放到磁盘,一个全在内存

4.运行方式一个用进程,一个是线程

一、Standalone集群环境安装

1、理解Standalone集群架构

image.png

image.png


架构:普通分布式主从架构
主:Master:管理节点:管理从节点、接客、资源管理和任务
调度,等同于YARN中的ResourceManager
从:Worker:计算节点:负责利用自己节点的资源运行主节点
分配的任务
功能:提供分布式资源管理和任务调度,基本上与YARN是一致的
看着很像Yarn,其实作用跟yarn一样,是spark自带的计算平台。
每一台服务器上都要安装Annaconda ,否则会出现python3 找不到的错误!!
2、Standalone集群部署
第一步:将bigdata02和bigdata03安装Annaconda,因为里面有python3环境,假如没有安装的话,就报这个错误:

http://www.fp688.cn/news/153616.html

相关文章:

  • 网站备案用别人身份证网站营销策划公司
  • 网站建设公司做销售好不好产品推广平台
  • 网站制作网页制作贵阳网站建设推广
  • 个人做网站设计网络营销公司业务范围
  • 做网站编程手游推广渠道平台
  • seo推广优化外包公司seo北京优化
  • 茶叶网站制作模板百度高级搜索网址
  • 网站建设培训美女北京线上教学
  • 好看的手机网站模板谷歌浏览器怎么下载
  • 做国外的网站脚本外链生成工具
  • 网站设计的内容以及步骤台湾搜索引擎
  • 网站的内部优化北京网站优化平台
  • 网站建设课程心得体会seo刷排名工具
  • 课程分销的网站怎么做如何统计网站访问量
  • 外国人学做中国菜的网站有没有专门做营销的公司
  • 条件查询 php网站源码seo教学视频教程
  • 做网站需要什么基础长沙seo技术培训
  • 网站的优化是什么ui培训
  • 建网站得多少钱网页代码模板
  • 福州定制网站开发制作电商网站销售数据分析
  • 网站建设的原因企业网站建设的一般要素
  • 鞍山网站制作公司广州seo和网络推广
  • 镇江网站建设哪家好网络营销与电子商务的区别
  • 建设一个电商网站的流程是什么抖音关键词排名查询工具
  • 哪些大型网站有做互联网金融昆山优化外包
  • 免费中文企业网站模板百度搜索网
  • wordpress 引号被转义天津seo培训机构
  • 做免费的小说网站可以赚钱吗app开发制作
  • 公司网站怎么建立优化体系在线资源搜索神器
  • 如何使用记事本做网站软文代写发布网络