当前位置: 首页 > news >正文

珠海酒店网站建设公司真正免费建站网站

珠海酒店网站建设公司,真正免费建站网站,wordpress 只在首页显示,双语网站建设方案多维时序 | MATLAB实现基于VMD-SSA-LSSVM、SSA-LSSVM、VMD-LSSVM、LSSVM的多变量时间序列预测对比 目录 多维时序 | MATLAB实现基于VMD-SSA-LSSVM、SSA-LSSVM、VMD-LSSVM、LSSVM的多变量时间序列预测对比预测效果基本介绍程序设计学习总结参考资料 预测效果 基本介绍 多维时序 …

多维时序 | MATLAB实现基于VMD-SSA-LSSVM、SSA-LSSVM、VMD-LSSVM、LSSVM的多变量时间序列预测对比

目录

    • 多维时序 | MATLAB实现基于VMD-SSA-LSSVM、SSA-LSSVM、VMD-LSSVM、LSSVM的多变量时间序列预测对比
      • 预测效果
      • 基本介绍
      • 程序设计
      • 学习总结
      • 参考资料

预测效果

1
2
1

2
4
5
6
7
8

基本介绍

多维时序 | MATLAB实现基于VMD-SSA-LSSVM、SSA-LSSVM、VMD-LSSVM、LSSVM的多变量时间序列预测对比。
1.MATLAB实现基于VMD-SSA-LSSVM、SSA-LSSVM、VMD-LSSVM、LSSVM的多变量时间序列预测对比;
2.运行环境为Matlab2018b;
3.输入多个特征,输出单个变量,多变量时间序列预测;
4.data为数据集,所有文件放在一个文件夹;
5.命令窗口输出RMSE、MAE、MAPE多指标评价;

程序设计

  • 完整程序和数据获取方式1:私信博主;
  • 完整程序和数据获取方式2:同等价值程序兑换;
clc;clear;close all;format compact
addpath(genpath('LSSVMlabv1_8'));
unction [bestX,Convergence_curve]=ssa_lssvm(typeID,Kernel_type,inputn_train,label_train,inputn_test,label_test)
%% 麻雀优化
pop=10; % 麻雀数
M=10; % Maximum numbef of iterations
c=1;
d=10000;
dim=2;P_percent = 0.2;    % The population size of producers accounts for "P_percent" percent of the total population size
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
pNum = round( pop *  P_percent );    % The population size of the producers
lb= c.*ones( 1,dim );    % Lower limit/bounds/     a vector
ub= d.*ones( 1,dim );    % Upper limit/bounds/     a vector
%Initialization
for i = 1 : popx( i, : ) = lb + (ub - lb) .* rand( 1, dim );fit( i )=fitness(x(i,:),inputn_train,label_train,inputn_test,label_test,typeID,Kernel_type); 
end
pFit = fit;
pX = x;                            % The individual's best position corresponding to the pFit
[ fMin, bestI ] = min( fit );      % fMin denotes the global optimum fitness value
bestX = x( bestI, : );             % bestX denotes the global optimum position corresponding to fMinfor t = 1 : M[ ans, sortIndex ] = sort( pFit );% Sort.[fmax,B]=max( pFit );worse= x(B,:);r2=rand(1);%%%%%%%%%%%%%5%%%%%%这一部位为发现者(探索者)的位置更新%%%%%%%%%%%%%%%%%%%%%%%%%if(r2<0.8)%预警值较小,说明没有捕食者出现for i = 1 : pNum  %r2小于0.8的发现者的改变(1-20% Equation (3)r1=rand(1);x( sortIndex( i ), : ) = pX( sortIndex( i ), : )*exp(-(i)/(r1*M));%对自变量做一个随机变换x( sortIndex( i ), : ) = Bounds( x( sortIndex( i ), : ), lb, ub );%对超过边界的变量进行去除fit( sortIndex( i ) )=fitness(x(sortIndex( i ),:),inputn_train,label_train,inputn_test,label_test,typeID,Kernel_type); endelse   %预警值较大,说明有捕食者出现威胁到了种群的安全,需要去其它地方觅食for i = 1 : pNum   %r2大于0.8的发现者的改变x( sortIndex( i ), : ) = pX( sortIndex( i ), : )+randn(1)*ones(1,dim);x( sortIndex( i ), : ) = Bounds( x( sortIndex( i ), : ), lb, ub );fit( sortIndex( i ) )=fitness(x(sortIndex( i ),:),inputn_train,label_train,inputn_test,label_test,typeID,Kernel_type); endend[ fMMin, bestII ] = min( fit );bestXX = x( bestII, : );%%%%%%%%%%%%%5%%%%%%这一部位为加入者(追随者)的位置更新%%%%%%%%%%%%%%%%%%%%%%%%%for i = ( pNum + 1 ) : pop     %剩下20-100的个体的变换                % Equation (4)     A=floor(rand(1,dim)*2)*2-1;if( i>(pop/2))%这个代表这部分麻雀处于十分饥饿的状态(因为它们的能量很低,也是是适应度值很差),需要到其它地方觅食x( sortIndex(i ), : )=randn(1)*exp((worse-pX( sortIndex( i ), : ))/(i)^2);else%这一部分追随者是围绕最好的发现者周围进行觅食,其间也有可能发生食物的争夺,使其自己变成生产者x( sortIndex( i ), : )=bestXX+(abs(( pX( sortIndex( i ), : )-bestXX)))*(A'*(A*A')^(-1))*ones(1,dim);endx( sortIndex( i ), : ) = Bounds( x( sortIndex( i ), : ), lb, ub );%判断边界是否超出fit( sortIndex( i ) )=fitness(x(sortIndex( i ),:),inputn_train,label_train,inputn_test,label_test,typeID,Kernel_type); end%%%%%%%%%%%%%5%%%%%%这一部位为意识到危险(注意这里只是意识到了危险,不代表出现了真正的捕食者)的麻雀的位置更新%%%%%%%%%%%%%%%%%%%%%%%%%c=randperm(numel(sortIndex));%%%%%%%%%这个的作用是在种群中随机产生其位置(也就是这部分的麻雀位置一开始是随机的,意识到危险了要进行位置移动,%处于种群外围的麻雀向安全区域靠拢,处在种群中心的麻雀则随机行走以靠近别的麻雀)b=sortIndex(c(1:10));for j =  1  : length(b)      % Equation (5)if( pFit( sortIndex( b(j) ) )>(fMin) ) %处于种群外围的麻雀的位置改变x( sortIndex( b(j) ), : )=bestX+(randn(1,dim)).*(abs(( pX( sortIndex( b(j) ), : ) -bestX)));else                       %处于种群中心的麻雀的位置改变x( sortIndex( b(j) ), : ) =pX( sortIndex( b(j) ), : )+(2*rand(1)-1)*(abs(pX( sortIndex( b(j) ), : )-worse))/ ( pFit( sortIndex( b(j) ) )-fmax+1e-50);endx( sortIndex(b(j) ), : ) = Bounds( x( sortIndex(b(j) ), : ), lb, ub );fit( sortIndex( b(j) ) )=fitness(x(sortIndex(b(j) ),:),inputn_train,label_train,inputn_test,label_test,typeID,Kernel_type); endfor i = 1 : popif ( fit( i ) < pFit( i ) )pFit( i ) = fit( i );pX( i, : ) = x( i, : );endif( pFit( i ) < fMin )fMin= pFit( i );bestX = pX( i, : );endendConvergence_curve(t,:)=[fMin mean(pFit)];
end

学习总结

  • 一些基本的思路和步骤来实现多变量时间序列预测。

VMD-SSA-LSSVM、SSA-LSSVM、VMD-LSSVM是一些用于多变量时间序列预测的方法,它们都涉及到信号分解和机器学习技术。下面是对这些方法的简要介绍:
VMD-SSA-LSSVM:这是一种基于变分模态分解(VMD)和麻雀算法优化(SSA)的支持向量机(SVM)模型。VMD是一种信号分解方法,可以将信号分解成多个振荡模态,并且每个模态具有不同的频率和振幅。SSA是一种智能优化算法的方法,可以将信号分解成多个本征模态。VMD-SSA-LSSVM将VMD和SSA结合起来,用于多变量时间序列的降维和智能优化,并且利用LSSVM进行预测。

SSA-LSSVM:这是一种基于麻雀算法和支持向量机的模型。它使用SSA智能寻参,然后使用LSSVM进行预测。相比于传统的LSSVM模型,SSA-LSSVM可以提高预测的准确性和稳定性。

VMD-LSSVM:这是一种基于变分模态分解和支持向量机的模型。它使用VMD将多变量时间序列分解成多个振荡模态,并且将每个模态作为输入特征向量,然后使用LSSVM进行预测。VMD-LSSVM可以提高预测的准确性和鲁棒性,特别是对于非平稳和非线性的多变量时间序列。

  • 以上是一个基本的多变量时间序列预测的实现步骤和思路,具体的实现细节需要根据数据和模型的具体情况进行调整。

参考资料

[1] https://blog.csdn.net/kjm13182345320/category_11799242.html?spm=1001.2014.3001.5482
[2] https://blog.csdn.net/kjm13182345320/article/details/124571691

http://www.fp688.cn/news/152780.html

相关文章:

  • 做网站郑州代运营哪家比较可靠
  • 做网站的叫什么职位王通seo教程
  • 哪些网站可以做团购深圳网络营销推广外包
  • 百度如何收录网站短链接生成器
  • 网站后台模板论坛腾讯广告投放推广平台价格
  • 制作网站开发公司seo优化技术培训中心
  • 别人品牌的域名做网站吗快速刷排名seo软件
  • 天津网站怎么做seo360手机优化大师安卓版
  • 如何网站托管中国站长站官网
  • 做外贸网站商城爱网站关键词查询工具长尾
  • wordpress typecho 大数据seo分析师
  • 网站生成软件友情链接赚钱
  • 橙色网站后台模板西安百度公司地址介绍
  • 专做母婴食品的网站网站主题
  • 宁陵县网站seoseo网络营销外包
  • 在线做数据图的网站台州seo网站排名优化
  • 企业做网站的费用怎么入账浅议网络营销论文
  • wordpress最新评论绍兴网站快速排名优化
  • 作文大全网站链接网络营销的特点分别是
  • 做网站如何快速推广一款产品下载百度到桌面上
  • 中国电信网站备案流程营销网络
  • 手机做网站的步骤百度后台推广登录
  • 重庆做网站怎么做软文营销文章500字
  • 全国思政网站的建设情况开源cms建站系统
  • 阿里云怎么做淘客网站seo搜索优化招聘
  • 企业网络营销网站设计搜索引擎广告的优缺点
  • 独立网站运营淘宝自动推广软件
  • 国外产品展示网站模板市场营销的对象有哪些
  • 网站上的广告怎么做2022年seo还值得做吗
  • 天津市建设 银行网站东莞网站建设哪家公司好