当前位置: 首页 > news >正文

网站开发面试题seo在线排名优化

网站开发面试题,seo在线排名优化,专门做进口产品的网站,云南软件开发公司1.数据清洗定义 数据清洗是对一些没有用的数据进行处理的过程。很多数据集存在数据缺失、数据格式错误、错误数据或重复数据的情况,如果要使数据分析更加准确,就需要对这些没有用的数据进行处理。 2.清洗空值 DataFrame.dropna(axis0, howany, threshN…

1.数据清洗定义

    数据清洗是对一些没有用的数据进行处理的过程。很多数据集存在数据缺失、数据格式错误、错误数据或重复数据的情况,如果要使数据分析更加准确,就需要对这些没有用的数据进行处理。

2.清洗空值

DataFrame.dropna(axis=0, how='any', thresh=None, subset=None, inplace=False)

    删除包含空字段的行,可以使用 dropna() 方法。可以通过 isnull() 判断各个单元格是否为空。

(1)axis:默认为 0,表示逢空值剔除整行,如果设置参数 axis=1 表示逢空值去掉整列。

(2)how:默认为 'any' 如果一行(或一列)里任何一个数据有出现 NA 就去掉整行,如果设置 how='all' 一行(或列)都是 NA 才去掉这整行。

(3)thresh:设置需要多少非空值的数据才可以保留下来的。

subset:设置想要检查的列。如果是多个列,可以使用列名的 list 作为参数。

(4)inplace:如果设置 True,将计算得到的值直接覆盖之前的值并返回 None,修改源数据。

import pandas as pddf = pd.read_csv('property-data.csv')print (df['NUM_BEDROOMS'])
print (df['NUM_BEDROOMS'].isnull())

3.指定空数据类型

import pandas as pdmissing_values = ["n/a", "na", "--"]
df = pd.read_csv('property-data.csv', na_values = missing_values)print (df['NUM_BEDROOMS'])
print (df['NUM_BEDROOMS'].isnull())

4.删除包含空数据的行

import pandas as pddf = pd.read_csv('property-data.csv')new_df = df.dropna()print(new_df.to_string())

5.使用 inplace = True 参数修改源数据 DataFrame

import pandas as pddf = pd.read_csv('property-data.csv')df.dropna(inplace = True)print(df.to_string())

6.移除 ST_NUM 列中字段值为空的行

import pandas as pddf = pd.read_csv('property-data.csv')df.dropna(subset=['ST_NUM'], inplace = True)print(df.to_string())

7.用fillna() 方法替换空字段

import pandas as pddf = pd.read_csv('property-data.csv')df.fillna(12345, inplace = True)print(df.to_string())

8.指定列来替换数据

import pandas as pddf = pd.read_csv('property-data.csv')df['PID'].fillna(12345, inplace = True)print(df.to_string())

9.使用 mean() 方法计算列的均值并替换空单元格

    替换空单元格的方法是计算列的均值、中位数值或众数。Pandas使用 mean()、median() 和 mode() 方法计算列的均值(所有值加起来的平均值)、中位数值(排序后排在中间的数)和众数(出现频率最高的数)。

import pandas as pddf = pd.read_csv('property-data.csv')x = df["ST_NUM"].mean()df["ST_NUM"].fillna(x, inplace = True)print(df.to_string())

10.使用 median() 方法计算列的中位数并替换空单元格

import pandas as pddf = pd.read_csv('property-data.csv')x = df["ST_NUM"].median()df["ST_NUM"].fillna(x, inplace = True)print(df.to_string())

11.使用 mode() 方法计算列的众数并替换空单元格

import pandas as pddf = pd.read_csv('property-data.csv')x = df["ST_NUM"].mode()df["ST_NUM"].fillna(x, inplace = True)print(df.to_string())

12.清洗格式错误数据

     数据格式错误的单元格会使数据分析变得困难,甚至不可能。可通过包含空单元格的行,或将列中所有单元格转换为相同格式数据。

import pandas as pd# 第三个日期格式错误
data = {"Date": ['2020/12/01', '2020/12/02' , '20201226'],"duration": [50, 40, 45]
}df = pd.DataFrame(data, index = ["day1", "day2", "day3"])df['Date'] = pd.to_datetime(df['Date'], format='mixed')print(df.to_string())

13.清洗错误数据

数据错误是常见情况,可以对错误的数据进行替换或移除。

import pandas as pdperson = {"name": ['Google', 'Kalika' , 'Taobao'],"age": [50, 40, 12345]    # 12345 年龄数据是错误的
}df = pd.DataFrame(person)df.loc[2, 'age'] = 30 # 修改数据print(df.to_string())

14.设置条件语句

import pandas as pdperson = {"name": ['Google', 'Kalika' , 'Taobao'],"age": [50, 200, 12345]   
}df = pd.DataFrame(person)for x in df.index:if df.loc[x, "age"] > 120:df.loc[x, "age"] = 120print(df.to_string())

15.将错误数据的行删除

import pandas as pdperson = {"name": ['Google', 'Kalika' , 'Taobao'],"age": [50, 40, 12345]    # 12345 年龄数据是错误的
}df = pd.DataFrame(person)for x in df.index:if df.loc[x, "age"] > 120:df.drop(x, inplace = True)print(df.to_string())

16.清洗重复数据

    清洗重复数据,可以使用 duplicated() 和 drop_duplicates() 方法。如果对应数据重复,duplicated() 会返回 True,否则返回 False。

import pandas as pdperson = {"name": ['Google', 'Kalika', 'Kalika', 'Taobao'],"age": [50, 40, 40, 23] 
}df = pd.DataFrame(person)print(df.duplicated())

17.使用drop_duplicates() 方法删除重复数据

import pandas as pdpersons = {"name": ['Google', 'Kalika', 'Kalika', 'Taobao'],"age": [50, 40, 40, 23] 
}df = pd.DataFrame(persons)df.drop_duplicates(inplace = True)print(df)

http://www.fp688.cn/news/147137.html

相关文章:

  • 免费做字体的网站游戏推广渠道有哪些
  • 建一个购物网站要多少钱帮人推广的平台
  • 学生做网站客服系统网页源码2022免费
  • 福田网站制作公司河南网站推广电话
  • 东丰在线网站建设东莞seo
  • 怎么做网站一张图推广技巧
  • 小白网站搭建教程江苏网页设计
  • 帮我做网站推广潍坊seo建站
  • 深圳网站建设 设计首选公司郑州网络营销公司哪家好
  • 遂宁做网站新浪舆情通官网
  • 网站建设费用分类大连今日新闻头条
  • 网站开发的完整流程图百度推广手机版
  • 室内设计师灵感网站搜索引擎排名优化seo
  • 微信赌博链接网站建设网站发布与推广怎么写
  • 百度做网站电话多少钱长沙排名推广
  • 专业长春网站建设工作室互联网推广公司排名
  • 如何在电脑建设网站可以发布推广引流的悬赏平台
  • 网页制作公司职员的日常劳动场景游戏行业seo整站优化
  • 做网站推销自己的产品这可行吗北京seo网站优化培训
  • 广州网站优化费用域名批量查询注册
  • 可以免费看日本黄片的app做网站海外推广营销平台
  • 个人做外贸网站平台山西网络营销seo
  • h5页面开发用什么工具武汉网站推广优化
  • 微信公众号微网站制作百度建站官网
  • 园林绿化效果图制作seo服务加盟
  • 做网站如何来钱推广策略怎么写
  • 长宁网站制作百度云网盘搜索引擎入口
  • 资源收费网站怎么做东莞网络推广
  • 福州专业网站建设价格临沂百度seo
  • 卖汽车的网站怎么做搜索引擎优化的名词解释