当前位置: 首页 > news >正文

深圳分销网站设计线上营销

深圳分销网站设计,线上营销,如何做擦边球网站,wordpress args📋 博主简介 💖 作者简介:大家好,我是wux_labs。😜 热衷于各种主流技术,热爱数据科学、机器学习、云计算、人工智能。 通过了TiDB数据库专员(PCTA)、TiDB数据库专家(PCTP…

📋 博主简介

  • 💖 作者简介:大家好,我是wux_labs。😜
    热衷于各种主流技术,热爱数据科学、机器学习、云计算、人工智能。
    通过了TiDB数据库专员(PCTA)、TiDB数据库专家(PCTP)、TiDB数据库认证SQL开发专家(PCSD)认证。
    通过了微软Azure开发人员、Azure数据工程师、Azure解决方案架构师专家认证。
    对大数据技术栈Hadoop、Hive、Spark、Kafka等有深入研究,对Databricks的使用有丰富的经验。
  • 📝 个人主页:wux_labs,如果您对我还算满意,请关注一下吧~🔥
  • 📝 个人社区:数据科学社区,如果您是数据科学爱好者,一起来交流吧~🔥
  • 🎉 请支持我:欢迎大家 点赞👍+收藏⭐️+吐槽📝,您的支持是我持续创作的动力~🔥

《PySpark大数据分析实战》-19.NumPy介绍ndarray介绍

  • 《PySpark大数据分析实战》-19.NumPy介绍ndarray介绍
    • 前言
    • 数学计算库NumPy介绍
      • 多维数组对象ndarray
      • 数组的访问
    • 结束语

《PySpark大数据分析实战》-19.NumPy介绍ndarray介绍

前言

大家好!今天为大家分享的是《PySpark大数据分析实战》第3章第2节的内容:NumPy介绍ndarray介绍。

图书在:当当、京东、机械工业出版社以及各大书店有售!

数学计算库NumPy介绍

NumPy(Numerical Python)是Python中科学计算的基础包,是用于科学计算和数值分析的一个重要库。它提供了多维数组对象(ndarray),各种派生对象,以及用于数组快速操作的通用函数、线性代数、傅里叶变换、随机数生成等功能,是Python科学计算中必不可少的库。要在项目中使用NumPy,需要在Python环境中安装NumPy,命令如下:

$ pip install numpy

在使用时需要在Python脚本中导入numpy,以及其他必要的包,代码如下:

import numpy as np
import random
import time

多维数组对象ndarray

NumPy包的核心是ndarray对象,它封装了Python原生的相同数据类型的N维数组。ndarray是NumPy中用于存储和处理数据的核心数据结构,支持向量化计算和广播等操作。为了保证其性能优良,其中有许多操作都是代码在本地进行编译后执行的。

创建一个ndarray对象就和创建Python本地list对象一样简单,在NumPy中创建一维数组可以使用numpy.array()函数,这个函数可以接受一个集合对象,如列表或元组,将其转换为一维数组。下面的案例中创建了一个一维数组,代码如下:

ary1 = np.array([1,2,3,4,5,6,7,8,9])

NumPy专门针对ndarray的操作和运算进行了设计,数组的存储效率和输入输出性能远优于Python中的集合,数组越大,NumPy的优势就越明显。下面的案例中,创建了一个包含1亿个随机数的集合,分别用本地集合对象和ndarray对象对元素求和,比较两种方式的耗时,代码如下:

lst1 = []
for i in range(100000000):lst1.append(random.random())# 使用Python原生list进行运算
t1 = time.time()
sum1 = sum(lst1)
t2 = time.time()# 使用ndarray进行运算
ary2 = np.array(lst1)
t3 = time.time()
sum2 = np.sum(ary2)
t4 = time.time()# 考察两种方式的处理时间
print(t2 - t1, '---', t4 - t3)

执行代码,输出结果如下:

0.9900028705596924 --- 0.13501548767089844

可以看到,ndarray的计算速度快很多。相对于Python中的集合,ndarray有一些优势:

  • ndarray存储的是相同类型的数据,在内存中是连续存储的。
  • ndarray支持并行化运算。
  • NumPy底层使用C语言编写,内部解除了GIL(全局解释器锁),其对数组的操作速度不受Python解释器的限制,效率远高于Python代码。

在NumPy中创建一个N维数组也是使用numpy.array()函数,在下面的案例中创建了一个二维数组,代码如下:

ary3 = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])

数组的访问

ndarray对象的元素可以通过索引、切片、迭代等方式进行访问和修改,这和Python本地集合的访问方式类似。在下面的案例中,分别通过索引、切片等方式访问元素,代码如下:

print("通过索引获取元素:", ary1[2])
print("通过切片获取元素:", ary1[2:7])
print("对元素进行迭代:", [x * 2 for x in ary1])

执行代码,输出结果如下:

通过索引获取元素: 3
通过切片获取元素: [3 4 5 6 7]
对元素进行迭代: [2, 4, 6, 8, 10, 12, 14, 16, 18]

结束语

好了,感谢大家的关注,今天就分享到这里了,更多详细内容,请阅读原书或持续关注专栏。

http://www.fp688.cn/news/145679.html

相关文章:

  • 网站建设 企业管理培训课程
  • 武汉网站免费制作青岛网页搜索排名提升
  • 电商网站开发语言外贸平台自建站
  • 找什么样的公司帮助做网站营销策划方案模板范文
  • 西安做网站朋朋网络网上教育培训机构排名
  • 大连网站建设运营国际新闻最新消息战争
  • 中国铁建企业门户网站搜索引擎bing
  • 信誉好的网站建设今日军事新闻最新消息新闻报道
  • 十大最好的网站网站优化平台
  • 专门做网站的公司交什么win10系统优化工具
  • 合肥网站设计哪家公司好网推广公司
  • 动画专业哪个大学最好seo优化内页排名
  • 武汉阳网站建设多少钱百度搜索关键词设置
  • 门诊部网站建设河南平价的seo整站优化定制
  • 企业做国际站哪个网站好网络营销网
  • 手机版网站开发教程百度官方下载
  • 转 如何用java做网站百度站长工具怎么关闭教程视频
  • 北京网站建设及app网站建立具体步骤是
  • 未来做啥网站能致富企业网站官网
  • 公司网站建设深圳海外seo推广公司
  • 哪里建网站好国外服务器免费ip地址
  • 做网站如何获利推广产品的方法
  • 公安分局网站模板市场营销平台
  • 网站开发的毕业设计题目免费推广自己的网站
  • 苏州集团网站制作开发seo优化排名是什么
  • 网站做多久流量成都关键词优化平台
  • 邵阳网站建设的话术网络营销工作内容
  • 网站网格哈尔滨最新
  • 太原网站建设价格套餐太原网站快速排名优化
  • 长沙优化网站价格泰安seo