当前位置: 首页 > news >正文

教你做吃的网站深圳搜索引擎优化推广便宜

教你做吃的网站,深圳搜索引擎优化推广便宜,专业团队宣传语,wordpress图床目录 一、目的与要求 二、实验内容 三、实验步骤 1、安装Hadoop和Spark 2、HDFS常用操作 3、Spark读取文件系统的数据 四、结果分析与实验体会 一、目的与要求 1、掌握在Linux虚拟机中安装Hadoop和Spark的方法; 2、熟悉HDFS的基本使用方法; 3、掌…

目录

一、目的与要求

二、实验内容

三、实验步骤

1、安装Hadoop和Spark

2、HDFS常用操作

3、Spark读取文件系统的数据

四、结果分析与实验体会


一、目的与要求

1、掌握在Linux虚拟机中安装Hadoop和Spark的方法;
2、熟悉HDFS的基本使用方法;
3、掌握使用Spark访问本地文件和HDFS文件的方法。

二、实验内容

1、安装Hadoop和Spark

        进入Linux系统,完成Hadoop伪分布式模式的安装。完成Hadoop的安装以后,再安装Spark(Local模式)。

2、HDFS常用操作

        使用Hadoop提供的Shell命令完成如下操作:

(1)启动Hadoop,在HDFS中创建用户目录“/user/你的名字的拼音”。以张三同学为例,创建 /user/zhangsan ,下同;
(2)在Linux系统的本地文件系统的“/home/zhangsan”目录下新建一个文本文件test.txt,并在该文件中至少十行英文语句,然后上传到HDFS的“/user/zhangsan”目录下;
(3)把HDFS中“/user/zhangsan”目录下的test.txt文件,下载到Linux系统的本地文件系统中的“/tmp”目录下;
(4)将HDFS中“/user/zhangsan”目录下的test.txt文件的内容输出到终端中进行显示;
(5)在HDFS中的“/”目录下,创建子目录input,把HDFS中“/user/zhangsan”目录下的test.txt文件,复制到“/input”目录下;
(6)删除HDFS中“/user/zhangsan”目录下的test.txt文件;
(7)查找HDFS中所有的 .txt文件;
(8)使用hadoop-mapreduce-examples-3.1.3.jar程序对/input目录下的文件进行单词个数统计,写出运行命令,并验证运行结果。

3、Spark读取文件系统的数据

(1)在pyspark中读取Linux系统本地文件“/home/zhangsan/test.txt”,然后统计出文件的行数;
(2)在pyspark中读取HDFS系统文件“/user/zhangsan/test.txt”,然后统计出文件的行数;
(3)编写独立应用程序,读取HDFS系统文件“/user/zhangsan/test.txt”,然后统计出文件的行数;通过 spark-submit 提交到 Spark 中运行程序。

三、实验步骤

1、安装Hadoop和Spark

        进入Linux系统,完成Hadoop伪分布式模式的安装。完成Hadoop的安装以后,再安装Spark(Local模式)。具体安装步骤可以参照我前面写的博客:

大数据存储技术(1)—— Hadoop简介及安装配置-CSDN博客icon-default.png?t=N7T8https://blog.csdn.net/Morse_Chen/article/details/134833801Spark环境搭建和使用方法-CSDN博客icon-default.png?t=N7T8https://blog.csdn.net/Morse_Chen/article/details/134979681

2、HDFS常用操作

(1)启动Hadoop,在HDFS中创建用户目录“/user/你的名字的拼音”。以张三同学为例,创建 /user/zhangsan ,下同;

[root@bigdata zhc]# start-dfs.sh
[root@bigdata zhc]# jps

[root@bigdata zhc]# hdfs dfs -mkdir -p /user/zhc
[root@bigdata zhc]# hdfs dfs -ls /user

 

(2)在Linux系统的本地文件系统的“/home/zhangsan”目录下新建一个文本文件test.txt,并在该文件中至少十行英文语句,然后上传到HDFS的“/user/zhangsan”目录下;

[root@bigdata zhc]# cd /home/zhc
[root@bigdata zhc]# vi test.txt
[root@bigdata zhc]# hdfs dfs -put /home/zhc/test.txt /user/zhc

test.txt 文件内容如下: 

welcome to linux
hello hadoop
spark is fast
hdfs is good
start pyspark
use python
scala and R
great success
I love spark
ten

这里可以看到上传成功了。 

(3)把HDFS中“/user/zhangsan”目录下的test.txt文件,下载到Linux系统的本地文件系统中的“/tmp”目录下;

[root@bigdata zhc]# hdfs dfs -get /user/zhc/test.txt /tmp/

(4)将HDFS中“/user/zhangsan”目录下的test.txt文件的内容输出到终端中进行显示;

[root@bigdata zhc]# hdfs dfs -cat /user/zhc/test.txt

(5)在HDFS中的“/”目录下,创建子目录input,把HDFS中“/user/zhangsan”目录下的test.txt文件,复制到“/input”目录下;

[root@bigdata zhc]# hdfs dfs -cp /user/zhc/test.txt /input/

(6)删除HDFS中“/user/zhangsan”目录下的test.txt文件;

[root@bigdata zhc]# hdfs dfs -rm -f /user/zhc/test.txt

(7)查找HDFS中所有的 .txt文件;

[root@bigdata zhc]# hdfs dfs -ls -R / | grep -i '\.txt$'

(8)使用hadoop-mapreduce-examples-3.1.3.jar程序对/input目录下的test.txt文件进行单词个数统计,写出运行命令,并验证运行结果。

注意:在做这一步之前,要先启动yarn进程;
           指定输出结果的路径/output,该路径不能已存在。

先切换到 /usr/local/servers/hadoop/share/hadoop/mapreduce 路径下,然后再开始统计单词个数。

[root@bigdata zhc]# cd /usr/local/servers/hadoop/share/hadoop/mapreduce
[root@bigdata mapreduce]# hadoop jar hadoop-mapreduce-examples-3.1.3.jar wordcount /input/test.txt /output

输入命令查看HDFS文件系统中/output目录下的结果。 

[root@bigdata mapreduce]# hdfs dfs -ls /output
[root@bigdata mapreduce]# hdfs dfs -cat /output/part-r-00000

3、Spark读取文件系统的数据

先在终端启动Spark。

[root@bigdata zhc]# pyspark

 (1)在pyspark中读取Linux系统本地文件“/home/zhangsan/test.txt”,然后统计出文件的行数;

>>> textFile=sc.textFile("file:///home/zhc/test.txt")
>>> linecount=textFile.count()
>>> print(linecount)

(2)在pyspark中读取HDFS系统文件“/user/zhangsan/test.txt”(如果该文件不存在,请先创建),然后统计出文件的行数;

注意:由于在第2题的(6)问中,已经删除了HDFS中“/user/zhangsan”目录下的test.txt文件,所以这里要重新将test.txt文件从本地系统上传到HDFS中

[root@bigdata zhc]# hdfs dfs -put /home/zhc/test.txt /user/zhc
>>> textFile=sc.textFile("hdfs://localhost:9000/user/zhc/test.txt")
>>> linecount=textFile.count()
>>> print(linecount)

(3)编写独立应用程序,读取HDFS系统文件“/user/zhangsan/test.txt”,然后统计出文件的行数;通过 spark-submit 提交到 Spark 中运行程序。

[root@bigdata mycode]# vi CountLines_hdfs.py
[root@bigdata mycode]# spark-submit CountLines_hdfs.py 

CountLines_hdfs.py文件内容如下:

from pyspark import SparkContext
FilePath = "hdfs://localhost:9000/user/zhc/test.txt"
sc = SparkContext("local","Simple App")
data = sc.textFile(FilePath).cache( )
print("文件行数:",data.count())

四、结果分析与实验体会

        通过本次Spark实验,学会了如何安装、启动Hadoop和Spark,并掌握了HDFS的基本使用方法,使用Spark访问本地文件和HDFS文件的方法。在Linux系统的本地文件系统和在HDFS中分别进行各种文件操作,然后在Spark中读取文件系统的数据,并能统计文件的行数。
        在做第三题(2)时,在pyspark中读取HDFS系统文件“/user/zhangsan/test.txt”,要将第二题(6)中删除的test.txt文件重新上传到HDFS中,注意文件路径要写正确, file_path=“hdfs:///user/zhc/test.txt”。在第三题(3)中,可以修改如下路径中的文件 /usr/local/spark/conf/log4j.properties.template,将文件中内容 “log4j.rootCategory=INFO” 改为 “log4j.rootCategory=ERROR”,这样在输出结果时,就不会显示大量的INFO信息,使得结果更简化。

http://www.fp688.cn/news/145123.html

相关文章:

  • 如何设计个人网页贴吧aso优化贴吧
  • 郑州网站维护百度站长工具seo查询
  • 珠海网站建设公司排名网络营销sem培训
  • 怎么用ip做网站网站优化方法
  • 武汉网站建设公司多少钱seo是付费还是免费推广
  • 服装定制软件如何进行搜索引擎优化
  • 提供微网站制作网络公司2345网址导航电脑版
  • 网站页面策划公众号开发网站公司
  • 做ppt的模板的网站有哪些内容软文模板app
  • 网站前端怎么做方法西安关键词排名优化
  • 乌兰浩特网站制作网站统计哪个好用
  • php网站助手时事新闻最新消息
  • wordpress仿安卓主题下载seo搜索引擎招聘
  • 网站备案加链接代码seo兼职招聘
  • 长期做网站应该购买稳定的空间百度站长社区
  • html5可以做交互网站吗百度竞价教程
  • 永久免费搭建网站百度网盘网页版入口
  • 类似微薄利网站怎么做百度贴吧人工客服电话
  • 供应网站建设学管理培训班去哪里学
  • 企业独立建站职业培训机构资质
  • 怎么建设自己的卡盟网站登封网站关键词优化软件
  • 做租房网站视频推广
  • 天天新品网做网站论坛优化seo
  • 广州番禺网站建设工作室无锡百度公司代理商
  • 门户网站如何做seo百度提交网址多久才会收录
  • 开发龙岗网站建设深圳网站设计公司哪家好
  • 网站数据中心的建设海南百度推广公司有哪些
  • 广西网站建设哪家好中央新闻直播今天
  • 做自己的网站给人的启发线下推广方式
  • 北京市环境建设办公室网站搜狐三季度营收多少