当前位置: 首页 > news >正文

建设旅游网站的意义快照关键词优化

建设旅游网站的意义,快照关键词优化,四海网络网站建设咨询,河南英文网站建设公司代码随想录算法训练营第五十二天 | 300.最长递增子序列,674. 最长连续递增序列,718. 最长重复子数组 300.最长递增子序列674. 最长连续递增序列718. 最长重复子数组 300.最长递增子序列 题目链接 视频讲解 给你一个整数数组 nums ,找到其中最…

代码随想录算法训练营第五十二天 | 300.最长递增子序列,674. 最长连续递增序列,718. 最长重复子数组

  • 300.最长递增子序列
  • 674. 最长连续递增序列
  • 718. 最长重复子数组

300.最长递增子序列

题目链接
视频讲解
给你一个整数数组 nums ,找到其中最长严格递增子序列的长度,子序列 是由数组派生而来的序列,删除(或不删除)数组中的元素而不改变其余元素的顺序,例如,[3,6,2,7] 是数组 [0,3,1,6,2,2,7] 的子序列

输入:nums = [10,9,2,5,3,7,101,18]
输出:4

dp[i]的定义
本题中,正确定义dp数组的含义十分重要
dp[i]表示i之前包括i的以nums[i]结尾的最长递增子序列的长度,为什么一定表示 “以nums[i]结尾的最长递增子序” ,因为我们在 做 递增比较的时候,如果比较 nums[j] 和 nums[i] 的大小,那么两个递增子序列一定分别以nums[j]为结尾 和 nums[i]为结尾, 要不然这个比较就没有意义了,不是尾部元素的比较那么 如何算递增呢
状态转移方程
位置i的最长升序子序列等于j从0到i-1各个位置的最长升序子序列 + 1 的最大值
所以:if (nums[i] > nums[j]) dp[i] = max(dp[i], dp[j] + 1);
注意这里不是要dp[i] 与 dp[j] + 1进行比较,而是我们要取dp[j] + 1的最大值
dp[i]的初始化
每一个i,对应的dp[i](即最长递增子序列)起始大小至少都是1.
确定遍历顺序
dp[i] 是有0到i-1各个位置的最长递增子序列 推导而来,那么遍历i一定是从前向后遍历
j其实就是遍历0到i-1,那么是从前到后,还是从后到前遍历都无所谓,只要吧 0 到 i-1 的元素都遍历了就行了
遍历i的循环在外层,遍历j则在内层,代码如下:

for (int i = 1; i < nums.size(); i++) {for (int j = 0; j < i; j++) {if (nums[i] > nums[j]) dp[i] = max(dp[i], dp[j] + 1);}if (dp[i] > result) result = dp[i]; // 取长的子序列
}

举例推导dp数组
输入:[0,1,0,3,2],dp数组的变化如下:
在这里插入图片描述

class Solution {
public:int lengthOfLIS(vector<int>& nums) {if (nums.size() <= 1) return nums.size();vector<int> dp(nums.size(), 1);int result = 0;for (int i = 1; i < nums.size(); i++) {for (int j = 0; j < i; j++) {if (nums[i] > nums[j]) dp[i] = max(dp[i], dp[j] + 1);}if (dp[i] > result) result = dp[i]; // 取长的子序列}return result;}
};

674. 最长连续递增序列

题目链接
视频讲解
给定一个未经排序的整数数组,找到最长且 连续递增的子序列,并返回该序列的长度,连续递增的子序列 可以由两个下标 l 和 r(l < r)确定,如果对于每个 l <= i < r,都有 nums[i] < nums[i + 1] ,那么子序列 [nums[l], nums[l + 1], …, nums[r - 1], nums[r]] 就是连续递增子序列

输入:nums = [1,3,5,4,7]
输出:3

动规五部曲分析如下:
确定dp数组(dp table)以及下标的含义
dp[i]:以下标i为结尾的连续递增的子序列长度为dp[i]
注意这里的定义,一定是以下标i为结尾,并不是说一定以下标0为起始位置
确定递推公式
如果 nums[i] > nums[i - 1],那么以 i 为结尾的连续递增的子序列长度 一定等于 以i - 1为结尾的连续递增的子序列长度 + 1,即:dp[i] = dp[i - 1] + 1;
因为本题要求连续递增子序列,所以就只要比较nums[i]与nums[i - 1],而不用去比较nums[j]与nums[i] (j是在0到i之间遍历)既然不用j了,那么也不用两层for循环,本题一层for循环就行,比较nums[i] 和 nums[i - 1]
dp数组如何初始化
以下标i为结尾的连续递增的子序列长度最少也应该是1,即就是nums[i]这一个元素
所以dp[i]应该初始1;
确定遍历顺序
从递推公式上可以看出, dp[i + 1]依赖dp[i],所以一定是从前向后遍历
本文在确定递推公式的时候也说明了为什么本题只需要一层for循环,代码如下:

for (int i = 1; i < nums.size(); i++) {if (nums[i] > nums[i - 1]) { // 连续记录dp[i] = dp[i - 1] + 1;}
}

举例推导dp数组
已输入nums = [1,3,5,4,7]为例,dp数组状态如下:
在这里插入图片描述
注意这里要取dp[i]里的最大值,所以dp[2]才是结果!

class Solution {
public:int findLengthOfLCIS(vector<int>& nums) {if (nums.size() == 0) return 0;int result = 1;vector<int> dp(nums.size() ,1);for (int i = 1; i < nums.size(); i++) {if (nums[i] > nums[i - 1]) { // 连续记录dp[i] = dp[i - 1] + 1;}if (dp[i] > result) result = dp[i];}return result;}
};

718. 最长重复子数组

题目链接
视频讲解
给两个整数数组 nums1 和 nums2 ,返回 两个数组中 公共的 、长度最长的子数组的长度

输入:nums1 = [1,2,3,2,1], nums2 = [3,2,1,4,7]
输出:3

确定dp数组(dp table)以及下标的含义
dp[i][j] :以下标i - 1为结尾的A,和以下标j - 1为结尾的B,最长重复子数组长度为dp[i][j]。 (特别注意: “以下标i - 1为结尾的A” 标明一定是 以A[i-1]为结尾的字符串 )那dp[0][0]是什么含义呢?总不能是以下标-1为结尾的A数组吧,其实dp[i][j]的定义也就决定着,我们在遍历dp[i][j]的时候i 和 j都要从1开始
那有人问了,定义dp[i][j]为 以下标i为结尾的A,和以下标j 为结尾的B,最长重复子数组长度。不行么?行倒是行! 但实现起来就麻烦一点,需要单独处理初始化部分,在本题解下面的拓展内容里,我给出了 第二种 dp数组的定义方式所对应的代码和讲解,大家比较一下就了解了
确定递推公式
根据dp[i][j]的定义,dp[i][j]的状态只能由dp[i - 1][j - 1]推导出来
即当A[i - 1] 和B[j - 1]相等的时候,dp[i][j] = dp[i - 1][j - 1] + 1;
根据递推公式可以看出,遍历i 和 j 要从1开始!
dp数组如何初始化
根据dp[i][j]的定义,dp[i][0] 和dp[0][j]其实都是没有意义的!
但dp[i][0] 和dp[0][j]要初始值,因为 为了方便递归公式dp[i][j] = dp[i - 1][j - 1] + 1;
所以dp[i][0] 和dp[0][j]初始化为0
举个例子A[0]如果和B[0]相同的话,dp[1][1] = dp[0][0] + 1,只有dp[0][0]初始为0,正好符合递推公式逐步累加起来
确定遍历顺序
外层for循环遍历A,内层for循环遍历B
同时题目要求长度最长的子数组的长度,所以在遍历的时候顺便把dp[i][j]的最大值记录下来
代码如下:

for (int i = 1; i <= nums1.size(); i++) {for (int j = 1; j <= nums2.size(); j++) {if (nums1[i - 1] == nums2[j - 1]) {dp[i][j] = dp[i - 1][j - 1] + 1;}if (dp[i][j] > result) result = dp[i][j];}
}

举例推导dp数组
拿示例1中,A: [1,2,3,2,1],B: [3,2,1,4,7]为例,画一个dp数组的状态变化,如下:
在这里插入图片描述

class Solution {
public:int findLength(vector<int>& nums1, vector<int>& nums2) {vector<vector<int>> dp (nums1.size() + 1, vector<int>(nums2.size() + 1, 0));int result = 0;for (int i = 1; i <= nums1.size(); i++) {for (int j = 1; j <= nums2.size(); j++) {if (nums1[i - 1] == nums2[j - 1]) {dp[i][j] = dp[i - 1][j - 1] + 1;}if (dp[i][j] > result) result = dp[i][j];}}return result;}
};
http://www.fp688.cn/news/143295.html

相关文章:

  • 做智能网站系统下载地址百度竞价推广关键词优化
  • 河北网站开发报价建立网站步骤
  • 电商网站用php做的吗拉新推广怎么做代理
  • 一家只做t恤的网站建设优化网站
  • 武汉h5网站设计seo引擎优化方案
  • 景安网络网站建设bt磁力搜索
  • 网站建设后期测试网站快速排名公司
  • 做网站怎样投放广告潍坊seo招聘
  • Wordpress首页制作代码三台网站seo
  • 做网站没有必须要ftp吗北京网站定制公司
  • 网站建设开发语言aso优化服务
  • 一级a做爰全过程网站网站的营销策略
  • 久久租房网无锡seo培训
  • 宁波网站制作工具电商网站图片
  • 呼市网站设计网站搜索优化技巧
  • wordpress图片加速百度推广优化师
  • 网站卖给做博彩的seo优化推广教程
  • 垂直行业门户网站建设方案seo服务商技术好的公司
  • 动态网站建设过程站长之家官网
  • 金鹏建设集团网站营销策划公司排名
  • 做公司网站别人能看到吗6优化百度seo技术搜索引擎
  • 北京通信管理局网站备案外贸网站推广平台
  • 如何做自己的个人网站河南seo网站多少钱
  • wap网站的发展如何自己开网站
  • wordpress文章形式seo课程总结怎么写
  • 广告传媒公司名字西安全网优化
  • 宁波企业建站长沙网站定制
  • 建网站难吗?百度升级最新版本下载安装
  • 设计网页页面的软件南昌网站seo
  • 专门做心理测试的网站微信营销策略有哪些