当前位置: 首页 > news >正文

德清网站制作100%上热门文案

德清网站制作,100%上热门文案,建设局是什么单位,南京高端定制网站建设系列文章目录 机器学习实验一:线性回归机器学习实验二:决策树模型机器学习实验三:支持向量机模型机器学习实验四:贝叶斯分类器机器学习实验五:集成学习机器学习实验六:聚类 文章目录 系列文章目录一、实验…

系列文章目录

  1. 机器学习实验一:线性回归
  2. 机器学习实验二:决策树模型
  3. 机器学习实验三:支持向量机模型
  4. 机器学习实验四:贝叶斯分类器
  5. 机器学习实验五:集成学习
  6. 机器学习实验六:聚类

文章目录

  • 系列文章目录
  • 一、实验目的
  • 二、实验原理
    • 1.聚类思想
    • 2.K 均值聚类算法 K-Means
  • 三、实验内容
  • 四、实验步骤
    • 1.训练 K-Means 模型
    • 2. 计算聚类纯度、兰德系数和 F1 值,评测聚类效果
  • 总结


一、实验目的

(1)掌握聚类的基本思想;
(2)掌握 K-means 算法,编程实现 K-means;
(3)掌握使用 K-Means 算法对鸢尾花三分类数据集进行聚类操作。

二、实验原理

1.聚类思想

聚类(Clustering)是一种典型的“无监督学习”,是把物理对象或抽象对
象的集合分组为由彼此类似的对象组成的多个类的分析过程。
聚类试图将数据集中的样本划分为若干个通常是不相交的子集,每个子集对
应一个簇。与分类的不同在于,聚类所要求的划分的类别是未知,类别个数也是
未知的。聚类的目标为簇内相似度尽可能高,簇间相似度尽可能低。

2.K 均值聚类算法 K-Means

K-means 是一种常用的基于欧式距离的聚类算法,其认为两个目标的距离越
近,相似度越大。其算法流程如下:在这里插入图片描述

三、实验内容

使用 Python 读取鸢尾花三分类数据集并训练最佳的 K-Means 模型,随后使
用生成的模型将数据进行聚类,并根据使用聚类纯度、兰德系数和 F1 值评测聚
类效果。
由于本次为聚类任务,因此使用聚类相关的混淆矩阵和评价指标。
聚类任务中的混淆矩阵与普通混淆矩阵的意义有一定区别,如下表所示:在这里插入图片描述
其中,TP 为两个同类样本在同一簇的数量;FP 为两个非同类样本在同一簇
的数量;TN 为两个非同类样本分别在两个簇的数量;FN 为两个同类样本分别在
两个簇的数量。
评价指标选择为聚类纯度 Purity、兰德系数 Rand Index(RI)、F1 度量值,
计算公式如下:在这里插入图片描述
代码实现时,可以直接调用 sklearn 库中的 pair_confusion_matrix()获得
混淆矩阵,随后利用公式进行计算。

四、实验步骤

1.训练 K-Means 模型

根据数据,我们已知鸢尾花分3类,因此我们这里的聚类数k=3。利用sklearn
的 KMeans()方法训练 K-Means 模型,并将结果用散点图表示,实现代码如下:

#训练 KMeans 模型
estimator = KMeans(n_clusters=3)
estimator.fit(X) #聚类
#绘制结果散点图
x0 = X[label_pred == 0]
x1 = X[label_pred == 1]
x2 = X[label_pred == 2]
plt.scatter(x0[:, 0], x0[:, 1], c = "red", marker='o', label='label0') 
plt.scatter(x1[:, 0], x1[:, 1], c = "green", marker='*', label='label1') 
plt.scatter(x2[:, 0], x2[:, 1], c = "blue", marker='+', label='label2') 
plt.xlabel('petal length') 
plt.ylabel('petal width') 
plt.legend(loc=2) 
plt.show() 

2. 计算聚类纯度、兰德系数和 F1 值,评测聚类效果

使用 sklearn.metrics 库中提供的 pair_confusion_matrix()方法求得当前
聚类的混淆矩阵,随后利用聚类纯度、兰德系数和 F1 值的计算公式计算得到当
前聚类效果的相应指标值。
以下为该部分代码:

#聚类纯度
def accuracy(labels_true, labels_pred):clusters = np.unique(labels_pred)labels_true = np.reshape(labels_true, (-1, 1))labels_pred = np.reshape(labels_pred, (-1, 1))count = []for c in clusters:idx = np.where(labels_pred == c)[0]labels_tmp = labels_true[idx, :].reshape(-1)count.append(np.bincount(labels_tmp).max())return np.sum(count) / labels_true.shape[0]
#兰德系数、F1 值
def get_rand_index_and_f_measure(labels_true, labels_pred, beta=1.):(tn, fp), (fn, tp) = pair_confusion_matrix(labels_true, labels_pred)ri = (tp + tn) / (tp + tn + fp + fn)p, r = tp / (tp + fp), tp / (tp + fn)f_beta = 2*p*r/(p+r)return ri, f_beta
#输出结果
purity = accuracy(y, y_pred)
ri, f_beta = get_rand_index_and_f_measure(y, y_pred, beta=1.)
print(f"聚类纯度:{purity}\n 兰德系数:{ri}\nF1 值:{f_beta}")

总结

以上就是今天要讲的内容,机器学习实验六:聚类

http://www.fp688.cn/news/143127.html

相关文章:

  • 佛山新网站建设服务百度爱采购怎么推广
  • 常德网站建目录搜索引擎有哪些
  • 什么网站专门做二手物品推广营销策划方案
  • 网站开发的地图接口国内最新新闻
  • 慈溪建设局网站国外网站排名前十
  • 长春做网站的公司有哪些专业营销团队公司
  • 汉中市建设工程招投标信息网官网深圳搜索引擎优化收费
  • 对招聘公司做评价的网站如何用google搜索产品关键词
  • 湖北省勘察设计协会网站搜索引擎seo优化平台
  • 在线 网站建设关键词seo公司真实推荐
  • wordpress discuz论坛模板下载优化电脑的软件有哪些
  • 网站页面设计说明搜索词和关键词
  • 网站开发入股合作分配比例网络营销的八大能力
  • 怎么做网站在里面填字百度sem推广
  • 个人网站做企业备案中国联通和腾讯
  • 阿里巴巴网站推广怎么做sem竞价推广公司
  • 泰州网站制作工具优化工具箱下载
  • 扬州网站建设 开元怎么去推广一个app
  • 免费服务器建立网站2022新闻大事件摘抄
  • 百度一下 你就知道首页南宁seo收费
  • 一个网站的首页设计ps腾讯新闻发布平台
  • 500强企业网站建设公司产品怎样网上推广
  • 迅捷在线图片编辑seo技术服务外包
  • 那家财经网站做的好企业管理软件
  • 网站怎么建立数据库今日国际重大新闻
  • 专业的网站建设公司排名快速优化工具
  • 营销网络平台网站搜索优化找哪家
  • 昆明睿腾科技网站建设seo常见优化技术
  • 无锡网站建设哪家公司比较好网页制作的软件有哪些
  • 如何做美女图片网站凡科建站登录