当前位置: 首页 > news >正文

企业网站域名后缀软文时光发稿平台

企业网站域名后缀,软文时光发稿平台,移动互联网应用程序个人信息保护管理暂行规定,热点新闻事件2023LeNet-5 是经典卷积神经网络之一,1998 年由 Yann LeCun 等人在论文 《Gradient-Based Learning Applied to Document Recognition》中提出。LeNet-5 网络使用了卷积层、池化层和全连接层,实现可以应用于手写体识别的卷积神经网络。TensorFlow 内置了 MNI…

LeNet-5 是经典卷积神经网络之一,1998 年由 Yann LeCun 等人在论文 《Gradient-Based Learning Applied to Document Recognition》中提出。LeNet-5 网络使用了卷积层、池化层和全连接层,实现可以应用于手写体识别的卷积神经网络。TensorFlow 内置了 MNIST 手写体数据集,可以很方便地读取数据集,并应用于后续的模型训练过程中。本文主要记录了如何使用 TensorFlow 2.0 实现 MNIST 手写体识别模型。

目录

1 数据集准备

2 模型建立

3 模型训练


1 数据集准备

        TensorFlow 内置了 MNIST 手写体数据集,安装 TensorFlow 之后,使用如下代码就可以加载 MNIST 数据集:

import tensorflow as tfmnist = tf.keras.datasets.mnist
(train_x, train_y), (test_x, test_y) = mnist.load_data()

        使用 Matplotlib 查看前 25 张图片,并打印对应的标签。

from matplotlib import pyplot as plt# 查看训练集
plt.figure(figsize=(3,3))
for i in range(25):plt.subplot(5,5,i+1)plt.imshow(train_x[i], cmap=plt.cm.binary)plt.xticks([])plt.yticks([])
plt.show()

        接着,使用 tf.one_hot() 函数,对图像的标签进行独热码编码。

# 预处理
train_y = tf.one_hot(train_y, depth=10)
test_y = tf.one_hot(test_y, depth=10)

2 模型建立

        MNIST 手写体数据集中,每张图像的大小是 28 × 28 × 1,按照 LeNet-5 模型的思路,构建卷积神经网络模型。选择 5 × 5 的卷积核,卷积层之后是 2 × 2 的平均池化,激活函数选择 sigmoid(除了最后一层)。

# the first layer can receive an 'input_shape' argument
model = tf.keras.models.Sequential([tf.keras.layers.Conv2D(filters=6,kernel_size=5,padding='valid',activation='sigmoid',input_shape=(28,28,1)),tf.keras.layers.AveragePooling2D(pool_size=(2,2),strides=2,padding='valid'),tf.keras.layers.Conv2D(filters=16,kernel_size=5,padding='valid',activation='sigmoid'),tf.keras.layers.AveragePooling2D(pool_size=(2,2),strides=2,padding='valid'),tf.keras.layers.Flatten(),tf.keras.layers.Dense(120,activation='sigmoid'),tf.keras.layers.Dense(84,activation='sigmoid'),tf.keras.layers.Dense(10,activation='softmax')
])

        使用 model.summary() 查看模型信息。

model.summary()

Model: "sequential"
_________________________________________________________________
 Layer (type)                Output Shape              Param #   
=================================================================
 conv2d (Conv2D)             (None, 24, 24, 6)         156       
                                                                 
 average_pooling2d (AverageP  (None, 12, 12, 6)        0         
 ooling2D)                                                       
                                                                 
 conv2d_1 (Conv2D)           (None, 8, 8, 16)          2416      
                                                                 
 average_pooling2d_1 (Averag  (None, 4, 4, 16)         0         
 ePooling2D)                                                     
                                                                 
 flatten (Flatten)           (None, 256)               0         
                                                                 
 dense (Dense)               (None, 120)               30840     
                                                                 
 dense_1 (Dense)             (None, 84)                10164     
                                                                 
 dense_2 (Dense)             (None, 10)                850       
                                                                 
=================================================================
Total params: 44,426
Trainable params: 44,426
Non-trainable params: 0
_________________________________________________________________

3 模型训练

        使用 compile() 函数配置模型,优化算法为 Adam 算法,学习率为 0.001,损失函数为交叉熵损失函数。

# 模型配置
model.compile(optimizer=tf.keras.optimizer.Adam(learning_rate=1e-3),loss=tf.keras.losses.CategoricalCrossentropy(),metrics=['accuracy']
)# 模型训练
model.fit(x=train_x,y=train_y,validation_split=0.0,epochs=10
)

Epoch 1/10
1875/1875 [==============================] - 72s 38ms/step - loss: 0.5806 - accuracy: 0.8206
Epoch 2/10
1875/1875 [==============================] - 70s 37ms/step - loss: 0.1254 - accuracy: 0.9620
Epoch 3/10
1875/1875 [==============================] - 75s 40ms/step - loss: 0.0870 - accuracy: 0.9735
Epoch 4/10
1875/1875 [==============================] - 82s 43ms/step - loss: 0.0699 - accuracy: 0.9785
Epoch 5/10
1875/1875 [==============================] - 69s 37ms/step - loss: 0.0604 - accuracy: 0.9809
Epoch 6/10
1875/1875 [==============================] - 68s 36ms/step - loss: 0.0530 - accuracy: 0.9833
Epoch 7/10
1875/1875 [==============================] - 72s 38ms/step - loss: 0.0477 - accuracy: 0.9854
Epoch 8/10
1875/1875 [==============================] - 70s 38ms/step - loss: 0.0436 - accuracy: 0.9863
Epoch 9/10
1875/1875 [==============================] - 70s 37ms/step - loss: 0.0399 - accuracy: 0.9873
Epoch 10/10
1875/1875 [==============================] - 68s 36ms/step - loss: 0.0357 - accuracy: 0.9883
<keras.callbacks.History at 0x20a56b65660>

http://www.fp688.cn/news/1235.html

相关文章:

  • 简述电子商务网站的建站流程长沙网络公司营销推广
  • 政府网站建设由哪个部门负责百度直播
  • wordpress调用评论数seo优化网站源码
  • 微信小程序工具类排行阿拉善盟seo
  • 深圳趣网站建设搜索引擎优化网站的网址
  • 广州广告网站建设太原网站建设谁家好
  • 网站建设工期安排表找网站公司制作网站
  • 高端网站建设公司兴田德润在那里杭州seo技术
  • 广州网站建设 企业电子商务营销模式有哪些
  • 陕西做网站公司哪家好郑州网络推广大包
  • 做第三方库网站seo技术建站
  • wordpress如何撤销301南沙seo培训
  • 网站群方案西安seo代理
  • 济南网站建设 伍际网络百度外推代发排名
  • 网站建设2019专门开发小程序的公司
  • 小程序++wordpress杭州seo整站优化
  • 做调查的网站推荐百度指数网址是多少
  • dede网站暂时关闭免费的app推广平台
  • 如何开通微信小程序商城阿里巴巴怎么优化关键词排名
  • 自己电脑做网站好吗百度网页推广费用
  • h5网站开发设计百度首页推荐关不掉吗
  • 2345网址导航下载到桌面网站关键词怎么优化排名
  • 文章网站模板中国人民银行网站
  • 临沂小学网站建设浏览器正能量网站免费
  • 一区适合晚上一个人看b站长沙百度快速排名
  • 传媒网站建设惠州seo外包
  • 建设银行官网网站首页站长工具国产
  • 自己的ip做网站广州网站关键词排名
  • 一级页面的网站怎么做企拓客app骗局
  • 如何做外贸网站推广seo网络推广是干嘛的